[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Segmentation and Cell Tracking of Breast Cancer Cells

  • Conference paper
Advances in Visual Computing (ISVC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6938))

Included in the following conference series:

Abstract

We describe a new technique to automatically segment and track the cell images of a breast cancer cell line in order to study cell migration and metastasis. Within each image observable cell characteristics vary widely, ranging from very bright completely bounded cells to barely visible cells with little to no apparent boundaries. A set of different segmentation algorithms are used in series to segment each cell type. Cell segmentation and cell tracking are done simultaneously, and no user selected parameters are needed. A new method for background subtraction is described and a new method of selective dilation is used to segment the barely visible cells. We show results for initial cell growth.

This contribution of NIST, an agency of the U.S. government, is not subject to copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaffer, C.L., Weinberg, R.A.: A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011)

    Article  Google Scholar 

  2. Miller, F.R., Santner, S.J., Tait, L., Dawson, P.J.: MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J. Natl. Cancer. Inst. 92, 1185–1186 (2000)

    Article  Google Scholar 

  3. Simon, I., Pound, C.R., Parin, A.W., Clemnes, J.Q., Christens-Barry, W.A.: Automated Image Analysis System for Detecting Boundaries of Live Prostate Cancer Cells. Cytometry 31, 287–294 (1998)

    Article  Google Scholar 

  4. Tscherepanow, M., Zollner, F., Hillebrand, M., Kummert, F.: Automatic Segmentation of Unstained Living Cells in Bright-Field Microscope Images. In: Perner, P., Salvetti, O. (eds.) MDA 2008. LNCS (LNAI), vol. 5108, pp. 158–172. Springer, Heidelberg (2008)

    Google Scholar 

  5. Zhang, K., Xiong, H., Yang, L., Zhou, X.: A Novel Coarse-to-Fine Adaptaton segmentation Approach for Cellular Image Analysis. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4351, pp. 322–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., Mikula, K., Peyrieras, N., Sarit, A.: Cells Segmentation from 3-D Confocal Images of early Zebrafish Embryogeneis. IEEE Transactions on Image Processing (September 2009)

    Google Scholar 

  7. Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W.: Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy. Bioinformatics 24(1), 94–101 (2007)

    Article  Google Scholar 

  8. Palaniappan, K., Ersoy, I., Nath, S.: Moving object segmentation using the flux tensor for biological video microscopy. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 483–493. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Stuelten, C.H., Busch, J.I., Tang, B., et al.: Transient tumor-fibroblast interactions increase tumor cell malignancy by a TGF-Beta mediated mechanism in a mouse xenograft model of breast cancer. PLoS One 5, e9832 (2010)

    Article  Google Scholar 

  10. Tang, B., Vu, M., Booker, T., et al.: TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J. Clin. Invest. 112, 1116–1124 (2003)

    Article  Google Scholar 

  11. Friedman, N., Russell, S.: Image segmentaton in video sequences: a probabilistic approach. In: Proceedings 13th Conference Uncertainty Artificial Intelligence (1997)

    Google Scholar 

  12. Kachouie, N.N., Fieguth, P., Ramunas, J., Jervis, E.: A Statistical Thresholding Method for Cell Tracking. In: IEEE International Symposium on Signal Processing and Information Technology (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peskin, A.P., Hoeppner, D.J., Stuelten, C.H. (2011). Segmentation and Cell Tracking of Breast Cancer Cells. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science, vol 6938. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24028-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24028-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24027-0

  • Online ISBN: 978-3-642-24028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics