Abstract
Mixed integer programming (MIP)has become one of the most important techniques in Operations Research and Discrete Optimization. SCIP (Solving Constraint Integer Programs) is currently one of the fastest non-commercial MIP solvers. It is based on the branchandboundprocedure in which the problem is recursively split into smaller subproblems, thereby creating a so-called branching tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization on a distributed memory computing environment. ParaSCIP uses SCIP solvers as independently running processes to solve subproblems (nodes of the branching tree) locally. This makes the parallelization development independent of the SCIP development. Thus, ParaSCIP directly profits from any algorithmic progress in future versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve two previously unsolved instances from MIPLIB2003, a standard test set library for MIP solvers. For these computations, we used up to 2048 cores of the HLRN II supercomputer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gurobi Optimizer. http://www.gurobi.com/
HLRN – Norddeutscher Verbund zur Förderung des Hoch- und Höchstleistungsrechnens. http://www.hlrn.de/
IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
Mixed Integer Problem Library (MIPLIB) 2003. http://miplib.zib.de/
SCIP: Solving Constraint Integer Programs. http://scip.zib.de/
TOP500 Supercomputer Sites. http://www.top500.org/list/2010/11/100
Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007)
Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)
Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4), 1–12 (2006)
Bixby, R., Rothberg, E.: Progress in computational mixed integer programming – A look back from the other side of the tipping point. Annals of Operations Research 149(1), 37–41 (2007)
Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: A test set of mixed integer programming problems. SIAM News 25, 16 (1992)
Karp, R.M.: Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York, USA (1972)
Laundy, R., Perregaard, M., Tavares, G., Tipi, H., Vazacopoulos, A.: Solving hard mixed-integer programming problems with Xpress-MP: A miplib 2003 case study. INFORMS Journal on Computing 21(2), 304–313 (2009)
Mittelmann, H.: Mixed integer linear programming benchmark (serial codes). http://plato.asu.edu/ftp/milpf.html
Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review 33, 60–100 (1991)
Ralphs, T.K., Ladányi, L., Saltzman, M.J.: Parallel branch, cut and price for large-scale discrete optimization. Mathematical Programming Series B 98(1–3), 253–280 (2003)
Shinano, Y., Achterberg, T., t: Fujie: A dynamic load balancing mechanism for new paralex. In: Proceedings of ICPADS 2008, pp. 455–462 (2008)
Xu, Y., Ralphs, T.K., Ladányi, L., Saltzmann, M.J.: Computational experience with a software framework for parallel integer programming. INFORMS Journal on Computing 21(3), 383–397 (2009)
Acknowledgements
Supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin. We are thankful to the HRLN II supercompter stuff, a specially Bernd Kallies and Hinnerk Stüben which gave us support at any time we needed it.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T. (2011). ParaSCIP: A Parallel Extension of SCIP. In: Bischof, C., Hegering, HG., Nagel, W., Wittum, G. (eds) Competence in High Performance Computing 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24025-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-24025-6_12
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24024-9
Online ISBN: 978-3-642-24025-6
eBook Packages: Computer ScienceComputer Science (R0)