[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Novel Criterion for Characterizing Diffusion Anisotropy in HARDI Data Based on the MDL Technique

  • Conference paper
Medical Biometrics (ICMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6165))

Included in the following conference series:

  • 1666 Accesses

Abstract

Based on the spherical harmonic decomposition of HARDI data, we propose a new criterion for characterizing the diffusion anisotropy in a voxel directly from the SH coefficients. Essentially, by considering the Rician noise in diffusion data, we modify the Rissanen’s criterion for fitting the diffusion situation in a voxel. In addition, the minimum description length (MDL) criterion has been employed for interpreting information from both the SH coefficients and the data. The criterion obtained can make use of the diffusion information so as to efficiently separate the different diffusion distributions. Various synthetic datasets have been used for verifying our method. The experimental results show the performance of the proposed criterion is accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, D., Barker, G., Arridge, S.: Detection and modelling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)

    Article  Google Scholar 

  2. Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-Source Diffusion-MRI Reconstruction and Processing. In: International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, May 2006, p. 2759 (2006)

    Google Scholar 

  3. Chen, Y., Guo, W., Zeng, Q., Yan, X., Huang, F., Zhang, H., Vemuri, B., Liu, Y.: Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution DWI. In: Washington, D. (ed.) Proc. IEEE CVPR, Washington, D.C, USA, pp. 588–593 (2004)

    Google Scholar 

  4. Chen, Y., Guo, W., Zeng, Q., Yan, X., Rao, M., Liu, Y.: Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution DWI. In: Proceedings of the 19th ICIPMI, USA, pp. 246–257 (2005)

    Google Scholar 

  5. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)

    Article  Google Scholar 

  6. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)

    Article  Google Scholar 

  7. Dom, B.: MDL estimation for small sample sizes and its application to linear regression. IBM Corp., Res. Rep. RJ 10030, June 13 (1996)

    Google Scholar 

  8. Fonteijn, H., Verstraten, F., Norris, D.: Probabilistic inference on q-ball imaging data. IEEE Trans. Medical Imaging 26(11), 1515–1524 (2007)

    Article  Google Scholar 

  9. Frank, L.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)

    Article  Google Scholar 

  10. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  11. Hess, C., Mukherjee, P., Han, E., Xu, D., Vigneron, D.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)

    Article  Google Scholar 

  12. Karlsen, O., Verhagen, R., Bovee, W.: Parameter estimation from Rician distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn. Reson. Med. 41, 614–623 (1999)

    Article  Google Scholar 

  13. Rissanen, J.: Modeling by shortest data description. Automatics 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  14. Rissanen, J.: MDL denoising. IEEE Trans. Information Theory 46(7), 2537–2543 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H.Z., McGinnity, T.M., Coleman, S.A., Jing, M. (2010). A Novel Criterion for Characterizing Diffusion Anisotropy in HARDI Data Based on the MDL Technique. In: Zhang, D., Sonka, M. (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13923-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13923-9_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13922-2

  • Online ISBN: 978-3-642-13923-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics