Abstract
Based on the spherical harmonic decomposition of HARDI data, we propose a new criterion for characterizing the diffusion anisotropy in a voxel directly from the SH coefficients. Essentially, by considering the Rician noise in diffusion data, we modify the Rissanen’s criterion for fitting the diffusion situation in a voxel. In addition, the minimum description length (MDL) criterion has been employed for interpreting information from both the SH coefficients and the data. The criterion obtained can make use of the diffusion information so as to efficiently separate the different diffusion distributions. Various synthetic datasets have been used for verifying our method. The experimental results show the performance of the proposed criterion is accurate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexander, D., Barker, G., Arridge, S.: Detection and modelling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)
Cook, P.A., Bai, Y., Nedjati-Gilani, S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-Source Diffusion-MRI Reconstruction and Processing. In: International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, May 2006, p. 2759 (2006)
Chen, Y., Guo, W., Zeng, Q., Yan, X., Huang, F., Zhang, H., Vemuri, B., Liu, Y.: Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution DWI. In: Washington, D. (ed.) Proc. IEEE CVPR, Washington, D.C, USA, pp. 588–593 (2004)
Chen, Y., Guo, W., Zeng, Q., Yan, X., Rao, M., Liu, Y.: Estimation, smoothing, and characterization of apparent diffusion coefficient profiles from high angular resolution DWI. In: Proceedings of the 19th ICIPMI, USA, pp. 246–257 (2005)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)
Dom, B.: MDL estimation for small sample sizes and its application to linear regression. IBM Corp., Res. Rep. RJ 10030, June 13 (1996)
Fonteijn, H., Verstraten, F., Norris, D.: Probabilistic inference on q-ball imaging data. IEEE Trans. Medical Imaging 26(11), 1515–1524 (2007)
Frank, L.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)
Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)
Hess, C., Mukherjee, P., Han, E., Xu, D., Vigneron, D.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)
Karlsen, O., Verhagen, R., Bovee, W.: Parameter estimation from Rician distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn. Reson. Med. 41, 614–623 (1999)
Rissanen, J.: Modeling by shortest data description. Automatics 14, 465–471 (1978)
Rissanen, J.: MDL denoising. IEEE Trans. Information Theory 46(7), 2537–2543 (2000)
Tuch, D.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, H.Z., McGinnity, T.M., Coleman, S.A., Jing, M. (2010). A Novel Criterion for Characterizing Diffusion Anisotropy in HARDI Data Based on the MDL Technique. In: Zhang, D., Sonka, M. (eds) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol 6165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13923-9_44
Download citation
DOI: https://doi.org/10.1007/978-3-642-13923-9_44
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13922-2
Online ISBN: 978-3-642-13923-9
eBook Packages: Computer ScienceComputer Science (R0)