[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hybrid Color Space Transformation to Visualize Color Constancy

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2010)

Abstract

Color constancy and chromatic edge detection are fundamental problems in artificial vision. In this paper we present a way to provide a visualization of color constancy that works well even in dark scenes where such humans and computer vision algorithms have hard problems due to the noise. The method is an hybrid and non linear transform of the RGB image based on the assignment of the chromatic angle as the luminosity value in the HSV space. This chromatic angle is defined on the basis of the dichromatic reflection model, having thus a physical model supporting it.

This work been supported by Ministerio de Ciencia e Innovación of Spain TIN2009-05736-E/TIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbur, J.L., Spang, K.: Colour constancy and conscious perception of changes of illuminant. Neuropsychologia 46, 853–863 (2008); PMID: 18206187

    Article  Google Scholar 

  2. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34(12), 2259–2281 (2001)

    Article  MATH  Google Scholar 

  3. Garcia-Sebastian, M., Gonzalez, A.I., Grana, M.: An adaptive field rule for non-parametric mri intensity inhomogeneity estimation algorithm. Neurocomputing 72(16-18), 3556–3569 (2009); Financial Engineering; Computational and Ambient Intelligence (IWANN 2007)

    Article  Google Scholar 

  4. Gijsenij, A., Gevers, T., van de Weijer, J.: Generalized gamut mapping using image derivative structures for color constancy. International Journal of Computer Vision 86(2), 127–139 (2010)

    Article  Google Scholar 

  5. Graña, M., Torrealdea, F.J.: Hierarchically structured systems. European Journal of Operational Research 25, 20–26 (1986)

    Article  Google Scholar 

  6. Choi, Y.-J., Yoon, K.-J., Kweon, I.S.: Illuminant chromaticity estimation using dichromatic slope and dichromatic line space. In: Korea-Japan Joint Workshop on Frontiers of Computer Vision, FCV, pp. 219–224 (2005)

    Google Scholar 

  7. Lezoray, O., Charrier, C.: Color image segmentation using morphological clustering and fusion with automatic scale selection. Pattern Recognition Letters 30(4), 397–406 (2009)

    Article  Google Scholar 

  8. Shafer, S.A.: Using color to separate reflection components. Color Research and Aplications 10, 43–51 (1984)

    Google Scholar 

  9. Shen, H.-L., Zhang, H.-G., Shao, S.-J., Xin, J.H.: Chromaticity-based separation of reflection components in a single image. Pattern Recognition 41, 2461–2469 (2008)

    Article  MATH  Google Scholar 

  10. Skaff, S., Arbel, T., Clark, J.J.: A sequential bayesian approach to color constancy using non-uniform filters. Computer Vision and Image Understanding 113(9), 993–1004 (2009)

    Article  Google Scholar 

  11. Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21(3), 321–334 (2004)

    Article  Google Scholar 

  12. Tan, R.T., Nishino, K., Ikeuchi, K.: Separating reflection components based on chromaticity and noise analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1373–1379 (2004)

    Article  Google Scholar 

  13. Tan, R.T., Ikeuchi, K.: Reflection components decomposition of textured surfaces using linear basis functions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 20-25, vol. 1, pp. 125–131 (2005)

    Google Scholar 

  14. Tan, T.T., Nishino, K., Ikeuchi, K.: Illumination chromaticity estimation using inverse-intensity chromaticity space. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 18-20, vol. 1, pp. I-673–I-680 (2003)

    Google Scholar 

  15. Yoon, K.-J., Chofi, Y.J., Kweon, I.-S.: Dichromatic-based color constancy using dichromatic slope and dichromatic line space. In: IEEE International Conference on Image Processing, ICIP 2005, September 11-14, vol. 3, pp. III–960–3 (2005)

    Google Scholar 

  16. Yoon, K.-J., Choi, Y., Kweon, I.S.: Fast separation of reflection components using a specularity-invariant image representation. In: IEEE International Conference on Image Processing, October 8-11, pp. 973–976 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreno, R., López-Guede, J.M., d’Anjou, A. (2010). Hybrid Color Space Transformation to Visualize Color Constancy. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds) Hybrid Artificial Intelligence Systems. HAIS 2010. Lecture Notes in Computer Science(), vol 6077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13803-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13803-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13802-7

  • Online ISBN: 978-3-642-13803-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics