Abstract
The increasing availability of large sequence data proposes new challenges for phylogenetic reconstruction. The search and evaluation of these datasets largely surpass the memory and processing capability of a single machine. In this context, parallel and distributed computing can be used not only to speedup the search, but also to improve the solution quality, search robustness and to solve larger problem instances [1]. On the other hand, it has been shown that applying distinct reconstruction methods to the same input data can generate conflicting trees [2, 3]. In this regard, a multi-objective approach can be a relevant contribution since it can search for phylogenies using more than a single criterion. One of the first studies that models phylogenetic inference as a multi-objective optimization problem (MOOP) was developed by the author of this paper [4]. In this approach, the multi-objective approach used the maximum parsimony (MP) and maximum likelihood (ML) as optimality criteria [5]. The proposed multi-objective evolutionary algorithm (MOEA) [6], called PhyloMOEA, produces a set of distinct solutions representing a trade-off between the considered objectives. In this paper, we present a new parallel PhyloMOEA version developed using the ParadisEO metaheuristic framework [7].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Talbi, E.: Metaheuristics: from design to implementation. Wiley, Chichester (2009)
Huelsenbeck, J.: Performance of Phylogenetic Methods in Simulation. Systematic Biology 44, 17–48 (1995)
Rokas, A., Wiliams, B., King, N., Carroll, S.: Genome-Scale Approaches to Resolving Incongrounce in Molecular Phylogenies. Nature 425(23), 798–804 (2003)
Cancino, W., Delbem, A.: Multi-criterion phylogenetic inference using evolutionary algorithms. In: IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, CIBCB 2007, pp. 351–358 (2007)
Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, New York (2001)
Cahon, S., Melab, N., Talbi, E.: Paradiseo: a framework for the flexible design of parallel and distributed hybrid metaheuristics. Journal of Heuristics 10, 357–380 (2004)
Bader, D., Roshan, U., Stamatakis, A.: Computational Grand Challenges in Assembling the Tree of Life: Problems and Solutions. Advances in Computers 68, 128 (2006)
Zwickl, D.: Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD thesis, Faculty of the Graduate School. University of Texas (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cancino, W., Jourdan, L., Talbi, EG., Delbem, A.C.B. (2010). A Parallel Multi-Objective Evolutionary Algorithm for Phylogenetic Inference. In: Blum, C., Battiti, R. (eds) Learning and Intelligent Optimization. LION 2010. Lecture Notes in Computer Science, vol 6073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13800-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-13800-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13799-0
Online ISBN: 978-3-642-13800-3
eBook Packages: Computer ScienceComputer Science (R0)