[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Feedback Vertex Set New Measure and New Structures

  • Conference paper
Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

We study the parameterized complexity of the feedback vertex set problem (fvs) on undirected graphs. We approach the problem by considering a variation of it, the disjoint feedback vertex set problem (disjoint-fvs), which finds a disjoint feedback vertex set of size k when a feedback vertex set of a graph is given. We show that disjoint-fvs admits a small kernel, and can be solved in polynomial time when the graph has a special structure that is closely related to the maximum genus of the graph. We then propose a simple branch-and-search process on disjoint-fvs, and introduce a new branch-and-search measure. The branch-and-search process effectively reduces a given graph to a graph with the special structure, and the new measure more precisely evaluates the efficiency of the branch-and-search process. These algorithmic, combinatorial, and topological structural studies enable us to develop an O(3.83k kn 2) time parameterized algorithm for the general fvs problem, improving the previous best algorithm of time O(5k k n 2) for the problem.

Supported in part by the US NSF under the Grants CCF-0830455 and CCF-0917288.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219–234 (2000)

    MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)

    Article  MATH  Google Scholar 

  3. Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures (manuscript, 2010)

    Google Scholar 

  4. Chen, J.: Minimum and maximum imbeddings. In: Gross, J., Yellen, J. (eds.) The Handbook of Graph Theory, pp. 625–641. CRC Press, Boca Raton (2003)

    Google Scholar 

  5. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the feedback vertex set problems. Journal of Computer and System Sciences 74, 1188–1198 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)

    Google Scholar 

  7. Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k) n 3) fpt algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Downey, R., Fellows, M.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  9. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  10. Festa, P., Pardalos, P., Resende, M.: Feedback set problems. In: Handbook of Combinatorial Optimization, vol. A(suppl.), pp. 209–258. Kluwer Acad. Publ., Dordrecht (1999)

    Google Scholar 

  11. Fomin, F., Gaspers, S., Pyatkin, A.: Finding a minimum feedback vertex set in time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 184–191. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Furst, M., Gross, J., McGeoch, L.: Finding a maximum-genus graph imbedding. Journal of the ACM 35(3), 523–534 (1988)

    Article  MathSciNet  Google Scholar 

  13. Gabow, H., Stallmann, M.: Efficient algorithms for graphic matroid intersection and parity. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 210–220. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  14. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)

    Article  MATH  Google Scholar 

  15. Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)

    Google Scholar 

  16. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Google Scholar 

  17. Li, D., Liu, Y.: A polynomial algorithm for finding the minimul feedback vertex set of a 3-regular simple graph. Acta Mathematica Scientia 19(4), 375–381 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Lovász, L.: The matroid matching problem. In: Algebraic Methods in Graph Theory, Colloquia Mathematica Societatis János Bolyai, Szeged, Hungary (1978)

    Google Scholar 

  19. Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415 (2006)

    Article  MathSciNet  Google Scholar 

  20. Raman, V., Saurabh, S., Subramanian, C.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Silberschatz, A., Galvin, P.: Operating System Concepts, 4th edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cao, Y., Chen, J., Liu, Y. (2010). On Feedback Vertex Set New Measure and New Structures. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics