[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simulating Dynamic Ultrasound Using MR-derived Motion Models to Assess Respiratory Synchronisation for Image-Guided Liver Interventions

  • Conference paper
Information Processing in Computer-Assisted Interventions (IPCAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6135))

Abstract

Tracked intra-operative ultrasound can be registered to real-time synthetic ultrasound derived from a motion model to align pre-operative images with a patient’s anatomy during an intervention. Furthermore, synchronisation of the motion model with the patient’s breathing can be achieved by comparing diaphragm motion obtained from the tracked ultrasound, with that obtained from the synthetic ultrasound. The purpose of this study was to assess the effects of spatial misalignment between the tracked and synthetic ultrasound images on synchronisation accuracy. Deformable image registration of 4-D volunteer MR data was used to build realistic subject-specific liver motion models. Displacements predicted by the motion model were applied to acoustic parameter maps obtained from segmented breath-hold MR volumes, and dynamic B-mode ultrasound images were simulated using a fast ultrasound propagation method. To prevent synchronisation errors due to breathing variations between motion model acquisition and interventional ultrasound imaging from influencing the results, we simulated both the synthetic and the tracked ultrasound using a single motion model. Spatial misalignments of up to ±2 cm between the tracked and synthetic ultrasound resulted in a maximum motion model breathing phase error of approx. 3 %, indicating that respiratory synchronisation of a motion model using tracked ultrasound is relatively insensitive to spatial misalignments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McClelland, J.R., Blackall, J.M., Tarte, S., et al.: A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Medical Physics 33(9), 3348–3358 (2006)

    Article  Google Scholar 

  2. Nguyen, T.N., Moseley, J.L., Dawson, L.A., et al.: Adapting liver motion models using a navigator channel technique. Medical Physics 36(4), 1061–1073 (2009)

    Article  Google Scholar 

  3. White, M.J., Hawkes, D.J., Melbourne, A., et al.: Motion artifact correction in free-breathing abdominal MRI using overlapping partial samples to recover image deformations. Magnetic Resonance in Medicine 62(2), 440–449 (2009)

    Article  Google Scholar 

  4. King, A.P., Boubertakh, R., Rhode, K.S., et al.: A subject-specific technique for respiratory motion correction in image-guided cardiac catheterisation procedures. Medical Image Analysis 13(3), 419–431 (2009)

    Article  Google Scholar 

  5. Wein, W., Brunke, S., Khamene, A., et al.: Automatic CT-ultrasound registration for diagnostic imaging and image-guided intervention. Medical Image Analysis 12(5), 577–585 (2008)

    Article  Google Scholar 

  6. Shams, R., Hartley, R., Navab, N.: Real-time simulation of medical ultrasound from CT images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 734–741. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Reichl, T., Passenger, J., Acosta, O., Salvado, O.: Ultrasound goes GPU: real-time simulation using CUDA. In: SPIE, vol. 7261 (2009)

    Google Scholar 

  8. King, A.P., Ma, Y.-L., Yao, C., Jansen, C., Razavi, R., Rhode, K.S., Penney, G.P.: Image-to-physical registration for image-guided interventions using 3-D ultrasound and an ultrasound imaging model. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 188–201. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Ruan, D., Fessler, J.A., Balter, J.M., Keall, P.J.: Real-time profiling of respiratory motion: baseline drift, frequency variation and fundamental pattern change. Physics in Medicine and Biology 54(15), 4777–4792 (2009)

    Article  Google Scholar 

  10. Timinger, H., Krueger, S., Dietmayer, K., Borgert, J.: Motion compensated coronary interventional navigation by means of diaphragm tracking and elastic motion models. Physics in Medicine and Biology 50(3), 491–503 (2005)

    Article  Google Scholar 

  11. Crum, W.R., Tanner, C., Hawkes, D.J.: Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging. Physics in Medicine and Biology 50(21), 5153–5174 (2005)

    Article  Google Scholar 

  12. von Siebenthal, M., Székely, G., Lomax, A.J., Cattin, P.C.: Systematic errors in respiratory gating due to intrafraction deformations of the liver. Medical Physics 34(9), 3620–3629 (2007)

    Article  Google Scholar 

  13. McClelland, J.R., Chandler, A.G., Blackall, J.M., Ahmad, S., Landau, D.B., Hawkes, D.J.: 4D motion models over the respiratory cycle for use in lung cancer radiotherapy planning. In: SPIE, vol. 5744, pp. 173–183 (2005)

    Google Scholar 

  14. Goldstein, A., Madrazo, B.L.: Slice-thickness artifacts in gray-scale ultrasound. Journal of Clinical Ultrasound 9(7), 365–375 (1981)

    Article  Google Scholar 

  15. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH 2001, pp. 341–346. ACM, New York (2001)

    Chapter  Google Scholar 

  16. Zhu, Y., Magee, D.R., Ratnalingam, R., Kessel, D.: A virtual ultrasound imaging system for the simulation of ultrasound-guided needle insertion procedures. In: Medical Image Understanding and Analysis (2006)

    Google Scholar 

  17. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  18. Curry, T.S., Dowdey, J.E., Murry, R.C.: Christensen’s Physics of Diagnostic Radiology, 4th edn. Lea & Febiger, Philadelphia (1990)

    Google Scholar 

  19. Modat, M., Ridgway, G., Taylor, Z., et al.: Fast free-form deformation using graphics processing units. In: Computer Methods and Programs in Biomedicine (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rijkhorst, EJ., Heanes, D., Odille, F., Hawkes, D., Barratt, D. (2010). Simulating Dynamic Ultrasound Using MR-derived Motion Models to Assess Respiratory Synchronisation for Image-Guided Liver Interventions . In: Navab, N., Jannin, P. (eds) Information Processing in Computer-Assisted Interventions. IPCAI 2010. Lecture Notes in Computer Science, vol 6135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13711-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13711-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13710-5

  • Online ISBN: 978-3-642-13711-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics