Abstract
High-resolution nuclear magnetic resonance (NMR) spectra contain important biomarkers that have potentials for early diagnosis of disease and subsequent monitoring of its progression. Traditional features extraction and analysis methods have been carried out in the original frequency spectrum domain. In this study, we conduct feature selection based on a complex wavelet transform by making use of its energy shift-insensitive property in a multiresolution signal decomposition. A false discovery rate based multiple testing procedure is employed to identify important metabolite features. Furthermore, a novel kernel-induced random forest algorithm is used for the classification of NMR spectra based on the selected features. Our experiments with real NMR spectra showed that the proposed method leads to significant reduction in misclassification rate.
Chapter PDF
Similar content being viewed by others
Keywords
References
Goodacre, R., York, E.V., Heald, J.K., Scott, I.M.: Phytochemistry 62, 859–863 (2003)
Tapp, H.S., Defernez, M., Kemsley, E.K.: Journal of Agricultural And Food Chemistry 51, 6110–6115 (2003)
Davis, R.A., Charlton, A.J., Oehlschlager, S., Wilson, J.C.: Chemometrics and Intelligent Laboratory Systems 81, 50–59 (2006)
Barache, D., Antoine, J., Dereppe, J.: Journal of Magnetic Resonance 128, 1–11 (1997)
Gunther, U.L., Ludwig, C., Ruterjans, H.: Journal of Magnetic Resonance 156, 19–25 (2002)
Qu, Y., Adam, B.-L., Thornquist, M., Potter, J.D., Thompson, M.L., Yasui, Y., Davis, J., Schellhammer, P.F., Cazares, L., Clements, M., Write, G.L., Feng, Z.: Biometrics 59, 143–151 (2003)
Kim, S.B., Wang, Z., Oraintara, S., Temiyasathit, C., Wongsawat, Y.: Chemometrics and Intelligent Laboratory Systems 90, 161–168 (2008)
Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth, Belmont (1984)
Fan, G.: Kernel-Induced Classification Tree and Random Forest.Technical Report, Dept. of Statistics and Actuarial Science, University of Waterloo (2009)
Gabor, D.: Journal of Institution Electrical Engineering, 429–457 (1946)
Benjamini, Y., Hochberg, Y.: Journal of The Royal Statistical Society Series B. Methodological 57, 289–300 (1995)
Shaffer, J.P.: Annual Review of Psychology 46, 561–584 (1995)
Kim, S.B., Tsui, K.-L., Borodovsky, M.: International Journal of Bioinformatics Research and Applications 2, 193–217 (2006)
Storey, J.D.: Annals of Statistics 31, 2013–2035 (2003)
Hastie, T., Tibshirani, R., Friedman, J.: The Element of Statistical Learning. Springer, New York (2001)
Lee, G.C., Woodruff, D.L.: Analytica Chimica Acta 513, 413–416 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, G., Wang, Z., Kim, S.B., Temiyasathit, C. (2010). Classification of High-Resolution NMR Spectra Based on Complex Wavelet Domain Feature Selection and Kernel-Induced Random Forest. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds) Image and Signal Processing. ICISP 2010. Lecture Notes in Computer Science, vol 6134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13681-8_69
Download citation
DOI: https://doi.org/10.1007/978-3-642-13681-8_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13680-1
Online ISBN: 978-3-642-13681-8
eBook Packages: Computer ScienceComputer Science (R0)