[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Feature Level Fusion of Face and Palmprint Biometrics by Isomorphic Graph-Based Improved K-Medoids Partitioning

  • Conference paper
Advances in Computer Science and Information Technology (AST 2010, ACN 2010)

Abstract

This paper presents a feature level fusion approach which uses the improved K-medoids clustering algorithm and isomorphic graph for face and palmprint biometrics. Partitioning around medoids (PAM) algorithm is used to partition the set of n invariant feature points of the face and palmprint images into k clusters. By partitioning the face and palmprint images with scale invariant features SIFT points, a number of clusters is formed on both the images. Then on each cluster, an isomorphic graph is drawn. In the next step, the most probable pair of graphs is searched using iterative relaxation algorithm from all possible isomorphic graphs for a pair of corresponding face and palmprint images. Finally, graphs are fused by pairing the isomorphic graphs into augmented groups in terms of addition of invariant SIFT points and in terms of combining pair of keypoint descriptors by concatenation rule. Experimental results obtained from the extensive evaluation show that the proposed feature level fusion with the improved K-medoids partitioning algorithm increases the performance of the system with utmost level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ross, A., Jain, A.K., Qian, J.Z.: Information Fusion in Biometrics. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 354–359. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Kisku, D.R., Gupta, P., Sing, J.K.: Feature Level Fusion of Biometric Cues: Human Identification with Doddington’s Caricature. In: International Conference on Security Technology, Communications in Computer and Information Sciences, pp. 157–164. Springer, Heidelberg (2009)

    Google Scholar 

  3. Rattani, A., Kisku, D.R., Bicego, M., Tistarelli, M.: Feature Level Fusion of Face and Fingerprint Biometrics. In: 1st IEEE International Conference on Biometrics, Theory, Applications and Systems, pp. 1–6 (2007)

    Google Scholar 

  4. Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Heidelberg (2006)

    Google Scholar 

  5. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics 14(1), 4–20 (2004)

    Google Scholar 

  6. Yao, Y.-F., Jing, X.-Y., Wong, H.-S.: Face and Palmprint Feature Level Fusion for Single Sample Biometrics Recognition. Neurocomputing 70(7), 1582–1586 (2007)

    Article  Google Scholar 

  7. Ross, A., Govindarajan, R.: Feature Level Fusion using Hand and Face Biometrics. In: SPIE Conference on Biometric Technology for Human Identification II, pp. 196–204 (2005)

    Google Scholar 

  8. Fu, Y., Ma, Z., Qi, M., Li, J., Li, X., Lu, Y.: A Novel User-specific Face and Palmprint Feature Level Fusion. In: 2nd International Symposium on Intelligent Information Technology Application, pp. 296–300 (2008)

    Google Scholar 

  9. Yan, Y., Zhang, Y.-J.: Multimodal Biometrics Fusion using Correlation Filter Bank. In: International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  10. Kisku, D.R., Rattani, A., Grosso, E., Tistarelli, M.: Face Identification by SIFT-based Complete Graph Topology. In: 5th IEEE International Workshop on Automatic Identification Advanced Technologies, pp. 63–68 (2007)

    Google Scholar 

  11. Jain, A.K., Feng, J.: Latent Palmprint Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(6), 1032–1047 (2009)

    Article  Google Scholar 

  12. Whitney, H.: Congruent Graphs and the Connectivity of Graphs. Am. J. Math. 54, 160–168 (1932)

    Article  MathSciNet  Google Scholar 

  13. Zhang, O., Couloigner, I.: A New and Efficient K-Medoid Algorithm for Spatial Clustering. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 181–189. Springer, Heidelberg (2005)

    Google Scholar 

  14. Lowe, D.G.: Object Recognition from Local Scale-invariant Features. In: International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  15. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, vol. 855. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Horiuchi, T.: Colorization Algorithm using Probabilistic Relaxation. Image and Vision Computing 22(3), 197–202 (2004)

    Article  Google Scholar 

  17. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  18. Kumar, A., Wong, D.C.M., Shen, H.C., Jain, A.K.: Personal verification using Palmprint and Hand Geometry Biometric. In: 4th International Conference on Audio- and Video-Based Biometric Authentication, pp. 668–675 (2003)

    Google Scholar 

  19. Kisku, D.R., Tistarelli, M., Sing, J.K., Gupta, P.: Face Recognition by Fusion of Local and Global Matching Scores using DS theory: An Evaluation with Uni-classifier and Multi-classifier Paradigm. In: IEEE Computer Vision and Pattern Recognition Workshop on Biometrics, pp. 60–65 (2009)

    Google Scholar 

  20. Ribarí, C.S., Fratríc, I.: A Biometric Identification System based on Eigenpalm and Eigenfinger Features. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1698–1709 (2005)

    Article  Google Scholar 

  21. Dubes, R., Jain, A.K.: Clustering Techniques: The User’s Dilemma. Pattern Recognition 8(4), 247–260 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kisku, D.R., Gupta, P., Sing, J.K. (2010). Feature Level Fusion of Face and Palmprint Biometrics by Isomorphic Graph-Based Improved K-Medoids Partitioning. In: Kim, Th., Adeli, H. (eds) Advances in Computer Science and Information Technology. AST ACN 2010 2010. Lecture Notes in Computer Science, vol 6059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13577-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13577-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13576-7

  • Online ISBN: 978-3-642-13577-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics