[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

AdQL – Anomaly Detection Q-Learning in Control Multi-queue Systems with QoS Constraints

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6071))

  • 910 Accesses

Abstract

Reinforcement Learning is an optimal adaptive optimization method for stationary environments. For non-stationary environments where the transition function and reward structure change over time, the traditional algorithms seems to be ineffective in order to follow the environmental changes. In this paper we propose the Anomaly Detection Q-learning algorithm which increase learning abilities of standard Q-learning algorithm by applying Chauvenet’s criterion to detects anomalies.

This work is co-financed by European Union within European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Watkins, C.: Learning from Delayed Rewards. PhD thesis, University of Cambridge, England (1989)

    Google Scholar 

  3. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  4. Sutton, R., Barto, A., Williams, R.: Reinforcement learning is direct adaptive control. IEEE Control Systems Magazine, 19–22 (1992)

    Google Scholar 

  5. Doya, K.: Metalearning and neuromodulation. Neural Netw. 15(4), 495–506 (2002)

    Article  Google Scholar 

  6. Murakoshi, K., Mizuno, J.: A parameter control method in reinforcement learning to rapidly follow unexpected environmental changes. Biosystems 77(1-3), 109–117 (2004)

    Article  Google Scholar 

  7. Reinforcement Learning-based Control of Traffic Lights in Non-stationary Environments: A Case Study in a Microscopic Simulator. In: Dunin-Keplicz, B., Omicini, A., Padget, J.A. (eds.) Proceedings of the 4th European Workshop on Multi-Agent Systems EUMAS 2006, December 14-15. CEUR Workshop Proceedings, CEUR-WS.org, vol. 223 (2006)

    Google Scholar 

  8. Poprawski, R., Salejda, W.: Zasady opracowania wyników pomiarów. Oficyna Wydawnicza Politechniki Wrocławskiej (2009)

    Google Scholar 

  9. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving markov decision problems. In: Proc. of the Eleventh International Conference on Uncertainty in Artificial Intelligence, pp. 394–402 (1995)

    Google Scholar 

  10. Levy, H., Sidi, M.: Polling systems: Applications, modelling, and optimization. IEEE Trans. Commun. 38(10), 1750–1760 (1990)

    Article  Google Scholar 

  11. Vishnevskii, V.M., Semenova, O.V.: Mathematical methods to study the polling systems. Automation and Remote Control 67(2), 173–220 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Documentation, C.I.: Quality of service solution guide, implementing diffserv for end-to-end quality of service, release 12.2, pp. 371–392 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stanek, M., Kwasnicka, H. (2010). AdQL – Anomaly Detection Q-Learning in Control Multi-queue Systems with QoS Constraints. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2010. Lecture Notes in Computer Science(), vol 6071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13541-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13541-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13540-8

  • Online ISBN: 978-3-642-13541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics