Abstract
In this paper, we propose a new approach of classification based on rough sets denoted Dynamic Belief Rough Set Classifier (D-BRSC) which is able to learn decision rules from uncertain data. The uncertainty appears only in decision attributes and is handled by the Transferable Belief Model (TBM), one interpretation of the belief function theory. The feature selection step of the construction procedure of our new technique of classification is based on the calculation of dynamic reduct. The reduction of uncertain and noisy decision table using dynamic approach which extracts more relevant and stable features yields more significant decision rules for the classification of the unseen objects. To prove that, we carry experimentations on real databases using the classification accuracy criterion. We also compare the results of D-BRSC with those obtained from Static Belief Rough Set Classifier (S-BRSC).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS (LNAI), vol. 869, pp. 346–355. Springer, Heidelberg (1994)
Bosse, E., Jousseleme, A.L., Grenier, D.: A new distance between two bodies of evidence. Information Fusion 2, 91–101 (2001)
Elouedi, Z., Mellouli, K., Smets, P.: Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. 34(1), 782–787 (2004)
Fixen, D., Mahler, R.P.S.: The modified Dempster-Shafer approach to classification. IEEE Trans. Syst. Man Cybern. 27(1), 96–104 (1997)
Modrzejewski, M.: Feature selection using rough sets theory. In: Proceedings of the 11th International Conference on Machine Learning, pp. 213–226 (1993)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)
Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 331–362. Kluwer Academic Publishers, Boston (1992)
Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234 (1994)
Tessem, B.: Approximations for efficient computation in the theory of evidence. Artif. Intell. 61(2), 315–329 (1993)
Trabelsi, S., Elouedi, Z.: Learning decision rules from uncertain data using rough sets. In: The 8th International FLINS Conference on Computational Intelligence in Decision and Control, Madrid, Spain, September 21-24, pp. 114–119. World scientific, Singapore (2008)
Trabelsi, S., Elouedi, Z., Lingras, P.: Dynamic reduct from partially uncertain data using rough sets. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 160–167. Springer, Heidelberg (2009)
Trabelsi, S., Elouedi, Z., Lingras, P.: Belief rough set classifier. In: Gao, Y., Japkowicz, N. (eds.) Canadian AI 2009. LNCS (LNAI), vol. 5549, pp. 257–261. Springer, Heidelberg (2009)
Zouhal, L.M., Denoeux, T.: An evidence-theory k-NN rule with parameter optemization. IEEE Trans. Syst. Man Cybern. C 28(2), 263–271 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trabelsi, S., Elouedi, Z., Lingras, P. (2010). A Comparison of Dynamic and Static Belief Rough Set Classifier. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-13529-3_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13528-6
Online ISBN: 978-3-642-13529-3
eBook Packages: Computer ScienceComputer Science (R0)