[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Comparison of Dynamic and Static Belief Rough Set Classifier

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6086))

Included in the following conference series:

Abstract

In this paper, we propose a new approach of classification based on rough sets denoted Dynamic Belief Rough Set Classifier (D-BRSC) which is able to learn decision rules from uncertain data. The uncertainty appears only in decision attributes and is handled by the Transferable Belief Model (TBM), one interpretation of the belief function theory. The feature selection step of the construction procedure of our new technique of classification is based on the calculation of dynamic reduct. The reduction of uncertain and noisy decision table using dynamic approach which extracts more relevant and stable features yields more significant decision rules for the classification of the unseen objects. To prove that, we carry experimentations on real databases using the classification accuracy criterion. We also compare the results of D-BRSC with those obtained from Static Belief Rough Set Classifier (S-BRSC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazan, J., Skowron, A., Synak, P.: Dynamic reducts as a tool for extracting laws from decision tables. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS (LNAI), vol. 869, pp. 346–355. Springer, Heidelberg (1994)

    Google Scholar 

  2. Bosse, E., Jousseleme, A.L., Grenier, D.: A new distance between two bodies of evidence. Information Fusion 2, 91–101 (2001)

    Article  Google Scholar 

  3. Elouedi, Z., Mellouli, K., Smets, P.: Assessing sensor reliability for multisensor data fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. 34(1), 782–787 (2004)

    Article  Google Scholar 

  4. Fixen, D., Mahler, R.P.S.: The modified Dempster-Shafer approach to classification. IEEE Trans. Syst. Man Cybern. 27(1), 96–104 (1997)

    Article  Google Scholar 

  5. Modrzejewski, M.: Feature selection using rough sets theory. In: Proceedings of the 11th International Conference on Machine Learning, pp. 213–226 (1993)

    Google Scholar 

  6. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishing, Dordrecht (1991)

    MATH  Google Scholar 

  7. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  8. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 331–362. Kluwer Academic Publishers, Boston (1992)

    Google Scholar 

  9. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artif. Intell. 61(2), 315–329 (1993)

    Article  MathSciNet  Google Scholar 

  11. Trabelsi, S., Elouedi, Z.: Learning decision rules from uncertain data using rough sets. In: The 8th International FLINS Conference on Computational Intelligence in Decision and Control, Madrid, Spain, September 21-24, pp. 114–119. World scientific, Singapore (2008)

    Google Scholar 

  12. Trabelsi, S., Elouedi, Z., Lingras, P.: Dynamic reduct from partially uncertain data using rough sets. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 160–167. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Trabelsi, S., Elouedi, Z., Lingras, P.: Belief rough set classifier. In: Gao, Y., Japkowicz, N. (eds.) Canadian AI 2009. LNCS (LNAI), vol. 5549, pp. 257–261. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Zouhal, L.M., Denoeux, T.: An evidence-theory k-NN rule with parameter optemization. IEEE Trans. Syst. Man Cybern. C 28(2), 263–271 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trabelsi, S., Elouedi, Z., Lingras, P. (2010). A Comparison of Dynamic and Static Belief Rough Set Classifier. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds) Rough Sets and Current Trends in Computing. RSCTC 2010. Lecture Notes in Computer Science(), vol 6086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13529-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13529-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13528-6

  • Online ISBN: 978-3-642-13529-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics