[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6130))

Included in the following conference series:

Abstract

In isogeometric analysis (IGA for short) framework, computational domain is exactly described using the same representation as that employed in the CAD process. For a CAD object, we can construct various computational domain with same shape but with different parameterization. One basic requirement is that the resulting parameterization should have no self-intersections. In this paper, a linear and easy-to-check sufficient condition for injectivity of planar B-spline parameterization is proposed. By an example of 2D thermal conduction problem, we show that different parameterization of computational domain has different impact on the simulation result and efficiency in IGA. For problems with exact solutions, we propose a shape optimization method to obtain optimal parameterization of computational domain. The proposed injective condition is used to check the injectivity of initial parameterization constructed by discrete Coons method. Several examples and comparisons are presented to show the effectiveness of the proposed method. Compared with the initial parameterization during refinement, the optimal parameterization can achieve the same accuracy but with less degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept volume parametrization for isogeometric analysis. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) MOS XIII 2009. LNCS, vol. 5654, pp. 19–44. Springer, Heidelberg (2009)

    Google Scholar 

  2. Auricchio, F., da Veiga, L.B., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully locking-free isogeometric approach for plane linear elasticity problems: A stream function formulation. Computer Methods in Applied Mechanics and Engineering 197, 160–172 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazilevs, Y., Beirao de Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for refined meshes. Mathematical Models and Methods in Applied Sciences 6, 1031–1090 (2006)

    Article  Google Scholar 

  4. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid structure interaction: Theory, algorithms, and computations. Computational Mechanics 43, 3–37 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid structure interaction analysis with applications to arterial blood flow. Computational Mechanics 38, 310–322 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bazilevs, Y., Hughes, T.J.R.: NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics 43, 143–150 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-Splines. Computer Methods in Applied Mechanics and Engineering 199(5-8), 229–263 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware Modeling: Understanding Quality Considerations in Modeling for Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering 199(5-8), 334–356 (2010)

    Article  MathSciNet  Google Scholar 

  9. Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 196, 4160–4183 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering 195, 5257–5296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dokken, T., Skytt, V., Haenisch, J., Bengtsson, K.: Isogeometric representation and analysis–bridging the gap between CAD and analysis. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 5-8 (2009)

    Google Scholar 

  12. Dörfel, M., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods in Applied Mechanics and Engineering 199(5-8), 264–275 (2010)

    Article  MathSciNet  Google Scholar 

  13. Duvigneau, R.: An introduction to isogeometric analysis with application to thermal conduction. INRIA Research Report RR-6957 (June 2009)

    Google Scholar 

  14. Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: \(\bar{B}\) and \(\bar{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Computer methods in applied mechanics and engineering 197, 2732–2762 (2008)

    Article  Google Scholar 

  15. Evans, J.A., Bazilevs, Y., Babuka, I., Hughes, T.J.R.: n-Widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering 198, 1726–1741 (2009)

    Article  MathSciNet  Google Scholar 

  16. Farin, G., Hansford, D.: Discrete coons patches. Computer Aided Geometric Design 16(7), 691–700 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gain, J.E., Dodgson, N.A.: Preventing self-Intersection under free-form deformation. IEEE Transactions on Visualization and Computer Graphics 7(4), 289–298 (2001)

    Article  Google Scholar 

  18. Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering 197, 4333–4352 (2008)

    Article  MathSciNet  Google Scholar 

  19. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39-41), 4135–4195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hughes, T.J.R., Realli, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer methods in applied mechanics and engineering 197, 4104–4124 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hughes, T.J.R., Realli, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 199(5-8), 301–313 (2010)

    Article  MathSciNet  Google Scholar 

  22. Jüttler, B.: Shape-preserving least-squares approximation by polynomial parametric spline curves. Computer Aided Geometric Design 14, 731–747 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kestelman, H.: Mappings with non-vanishing Jacobian. Amer. Math. Monthly 78, 662–663 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kim, H.J., Seo, Y.D., Youn, S.K.: Isogeometric analysis for trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering 198(37-40), 2982–2995 (2009)

    Article  Google Scholar 

  25. Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design 26(6), 648–664 (2009)

    Article  MathSciNet  Google Scholar 

  26. Sevilla, R., Fernandes-Mendez, S., Huerta, A.: NURBS-enhanced finite element method for Euler equations. International Journal for Numerical Methods in Fluids 57, 1051–1069 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering 197, 2976–2988 (2008)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C., Hughes, T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 196, 2943–2959 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2010). Optimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13411-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13410-4

  • Online ISBN: 978-3-642-13411-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics