Abstract
In isogeometric analysis (IGA for short) framework, computational domain is exactly described using the same representation as that employed in the CAD process. For a CAD object, we can construct various computational domain with same shape but with different parameterization. One basic requirement is that the resulting parameterization should have no self-intersections. In this paper, a linear and easy-to-check sufficient condition for injectivity of planar B-spline parameterization is proposed. By an example of 2D thermal conduction problem, we show that different parameterization of computational domain has different impact on the simulation result and efficiency in IGA. For problems with exact solutions, we propose a shape optimization method to obtain optimal parameterization of computational domain. The proposed injective condition is used to check the injectivity of initial parameterization constructed by discrete Coons method. Several examples and comparisons are presented to show the effectiveness of the proposed method. Compared with the initial parameterization during refinement, the optimal parameterization can achieve the same accuracy but with less degrees of freedom.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept volume parametrization for isogeometric analysis. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) MOS XIII 2009. LNCS, vol. 5654, pp. 19–44. Springer, Heidelberg (2009)
Auricchio, F., da Veiga, L.B., Buffa, A., Lovadina, C., Reali, A., Sangalli, G.: A fully locking-free isogeometric approach for plane linear elasticity problems: A stream function formulation. Computer Methods in Applied Mechanics and Engineering 197, 160–172 (2007)
Bazilevs, Y., Beirao de Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for refined meshes. Mathematical Models and Methods in Applied Sciences 6, 1031–1090 (2006)
Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid structure interaction: Theory, algorithms, and computations. Computational Mechanics 43, 3–37 (2008)
Bazilevs, Y., Calo, V.M., Zhang, Y., Hughes, T.J.R.: Isogeometric fluid structure interaction analysis with applications to arterial blood flow. Computational Mechanics 38, 310–322 (2006)
Bazilevs, Y., Hughes, T.J.R.: NURBS-based isogeometric analysis for the computation of flows about rotating components. Computational Mechanics 43, 143–150 (2008)
Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-Splines. Computer Methods in Applied Mechanics and Engineering 199(5-8), 229–263 (2010)
Cohen, E., Martin, T., Kirby, R.M., Lyche, T., Riesenfeld, R.F.: Analysis-aware Modeling: Understanding Quality Considerations in Modeling for Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering 199(5-8), 334–356 (2010)
Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 196, 4160–4183 (2007)
Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering 195, 5257–5296 (2006)
Dokken, T., Skytt, V., Haenisch, J., Bengtsson, K.: Isogeometric representation and analysis–bridging the gap between CAD and analysis. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, January 5-8 (2009)
Dörfel, M., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Computer Methods in Applied Mechanics and Engineering 199(5-8), 264–275 (2010)
Duvigneau, R.: An introduction to isogeometric analysis with application to thermal conduction. INRIA Research Report RR-6957 (June 2009)
Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: \(\bar{B}\) and \(\bar{F}\) projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements. Computer methods in applied mechanics and engineering 197, 2732–2762 (2008)
Evans, J.A., Bazilevs, Y., Babuka, I., Hughes, T.J.R.: n-Widths, supinfs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering 198, 1726–1741 (2009)
Farin, G., Hansford, D.: Discrete coons patches. Computer Aided Geometric Design 16(7), 691–700 (1999)
Gain, J.E., Dodgson, N.A.: Preventing self-Intersection under free-form deformation. IEEE Transactions on Visualization and Computer Graphics 7(4), 289–298 (2001)
Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering 197, 4333–4352 (2008)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194(39-41), 4135–4195 (2005)
Hughes, T.J.R., Realli, A., Sangalli, G.: Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS. Computer methods in applied mechanics and engineering 197, 4104–4124 (2008)
Hughes, T.J.R., Realli, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering 199(5-8), 301–313 (2010)
Jüttler, B.: Shape-preserving least-squares approximation by polynomial parametric spline curves. Computer Aided Geometric Design 14, 731–747 (1997)
Kestelman, H.: Mappings with non-vanishing Jacobian. Amer. Math. Monthly 78, 662–663 (1971)
Kim, H.J., Seo, Y.D., Youn, S.K.: Isogeometric analysis for trimmed CAD surfaces. Computer Methods in Applied Mechanics and Engineering 198(37-40), 2982–2995 (2009)
Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design 26(6), 648–664 (2009)
Sevilla, R., Fernandes-Mendez, S., Huerta, A.: NURBS-enhanced finite element method for Euler equations. International Journal for Numerical Methods in Fluids 57, 1051–1069 (2008)
Wall, W.A., Frenzel, M.A., Cyron, C.: Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering 197, 2976–2988 (2008)
Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C., Hughes, T.J.R.: Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Computer Methods in Applied Mechanics and Engineering 196, 2943–2959 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xu, G., Mourrain, B., Duvigneau, R., Galligo, A. (2010). Optimal Analysis-Aware Parameterization of Computational Domain in Isogeometric Analysis. In: Mourrain, B., Schaefer, S., Xu, G. (eds) Advances in Geometric Modeling and Processing. GMP 2010. Lecture Notes in Computer Science, vol 6130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13411-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-13411-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13410-4
Online ISBN: 978-3-642-13411-1
eBook Packages: Computer ScienceComputer Science (R0)