[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Crowd Dynamics Modeling in the Light of Proxemic Theories

  • Conference paper
Artifical Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6114))

Included in the following conference series:

Abstract

The application of the theory of proxemics brings a promising perspective to microscopic motion modeling in pedestrian dynamics. Combining an agent-based approach and spatial context make it possible to simulate crowd in different classes of situations. The article discusses certain aspects of proxemics theory and the possibility of using the Social Distances model for different classes of situations. Also, an idea of using specialized borderline cells is introduced, which enables more precise space representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandini, S., Manzoni, S., Vizzari, G.: Situated Cellular Agents a Model to Simulate Crowding Dynamics. Special Issues on Cellular Automata, 669–676 (2004)

    Google Scholar 

  2. Dijkstra, J., Jessurun, A.J., Timmermans, H.: A Multi-Agent Cellular Automata System for Visualising Simulated Pedestrian Activity. In: Proceedings of ACRI, pp. 29–36 (2000)

    Google Scholar 

  3. Dudek–Dyduch, E., Wąs, J.: Knowledge Representation of Pedestrian Dynamics in Crowd: Formalism of Cellular Automata. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1101–1110. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Gloor, C., Stucki, P., Nagel, K.: Hybrid Techniques for Pedestrian Simulations. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 581–590. Springer, Heidelberg (2004)

    Google Scholar 

  5. Hall, E.T.: The Silent Language. Garden City, New York (1959)

    Google Scholar 

  6. Hall, E.T.: The Hidden Dimension. Garden City, New York (1966)

    Google Scholar 

  7. Ickinger, W.J.: Behavioral game methodology for the study of proxemic behavior. Yale University, New Haven (1982)

    Google Scholar 

  8. Lawson, B.: Sociofugal and sociopetal space. In: The Language of Space, pp. 140–144. Architectural Press (2001)

    Google Scholar 

  9. Littlejohn, S., Foss, K.: Theories of Human Communication. In: Thomson Wadsworth Communication, pp. 107–108 (2005)

    Google Scholar 

  10. Low, S.M., Lawrence-Zúniga, D.: The Anthropology of Space and Place: Locating Culture. Blackwell Publishing, Malden (2003)

    Google Scholar 

  11. Wąs, J., Gudowski, B., Matuszyk, P.J.: Social Distances Model of Pedestrian Dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006)

    Google Scholar 

  12. Wąs, J.: Multi-agent Frame of Social Distances Model. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 567–570. Springer, Heidelberg (2008)

    Google Scholar 

  13. Proxemics, http://en.wikipedia.org/wiki/Proxemics

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wąs, J. (2010). Crowd Dynamics Modeling in the Light of Proxemic Theories. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13232-2_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13231-5

  • Online ISBN: 978-3-642-13232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics