[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Informed Genetic Algorithm for University Course and Student Timetabling Problems

  • Conference paper
Artifical Intelligence and Soft Computing (ICAISC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6114))

Included in the following conference series:

Abstract

This paper describes an Informed Genetic Algorithm (IGA), a genetic algorithm using greedy initialization and directed mutation, to solve a practical university course and student timetabling problem. A greedy method creates some feasible solutions, where all specified hard constraints are not broken, as initial population. A directed mutation scheme is used to reduce violations regarding all given soft constraints and to keep the solutions feasible. Here, IGA creates a timetable in two stages. Firstly, IGA evolves a course timetable using any constraints regarding lecturer, class and room. This stage produce best-so-far timetable. Secondly, using some certain rules IGA evolves the best-so-far timetable using all constraints. The batch student sectioning is done by allowing the first stage timetable to change. Computer simulation to a highly constrained timetabling problem shows that the informed GA is capable of producing a reliable timetable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Müller, T., Murray, K.: Comprehensive Approach to Student Sectioning. In: The 7th International Conference on the Practice and Theory of Automated Timetabling (2008)

    Google Scholar 

  2. Nuntasen, N., Innet, S.: A Novel Approach of Genetic Algorithm for Solving University Timetabling Problems: a case study of Thai Universities. In: Proceedings of the 6th WSEAS International Conference on System Science and Simulation in Engineering (2007)

    Google Scholar 

  3. Murray, K., Müller, T., Rudová, H.: Modeling and Solution of a Complex University Course Timetabling Problem. In: The 6th International Conference on the Practice and Theory of Automated Timetabling (2007)

    Google Scholar 

  4. Burke, E.K., Jackson, K., Kingston, J.H., Weare, R.: Automated University Timetabling: The State of the Art. The Computer Journal 40(9), 565–571 (1997)

    Article  Google Scholar 

  5. Burke, E.K., Elliman, D., Weare, R.F.: A Hybrid Genetic Algorithm for Highly Constrained Timetabling Problems. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 605–610 (1995)

    Google Scholar 

  6. Ross, P., Corne, D., Fang, H.-L.: Improving Evolutionary Timetabling with Delta Evaluation and Directed Mutation. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 556–565. Springer, Heidelberg (1994)

    Google Scholar 

  7. Corne, D., Ross, P., Fang, H.-L.: Fast Practical Evolutionary Timetabling. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, pp. 251–263. Springer, Heidelberg (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suyanto (2010). An Informed Genetic Algorithm for University Course and Student Timetabling Problems. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artifical Intelligence and Soft Computing. ICAISC 2010. Lecture Notes in Computer Science(), vol 6114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13232-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13232-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13231-5

  • Online ISBN: 978-3-642-13232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics