Abstract
The field of bioimage informatics concerns the development and use of methods for computational analysis of biological images. Traditionally, analysis of such images has been done manually. Manual annotation is, however, slow, expensive, and often highly variable from one expert to another. Furthermore, with modern automated microscopes, hundreds to thousands of images can be collected per hour, making manual analysis infeasible.
This field borrows from the pattern recognition and computer vision literature (which contain many techniques for image processing and recognition), but has its own unique challenges and tradeoffs.
Fluorescence microscopy images represent perhaps the largest class of biological images for which automation is needed. For this modality, typical problems include cell segmentation, classification of phenotypical response, or decisions regarding differentiated responses (treatment vs. control setting). This overview focuses on the problem of subcellular location determination as a running example, but the techniques discussed are often applicable to other problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Perlman, Z.E., Slack, M.D., Feng, Y., Mitchison, T.J., Wu, L.F., Altschuler, S.J.: Multidimensional Drug Profiling By Automated Microscopy. Science 306(5699), 1194–1198 (2004)
Boland, M.V., Murphy, R.F.: A Neural Network Classifier Capable of Recognizing the Patterns of all Major Subcellular Structures in Fluorescence Microscope Images of HeLa Cells. Bioinformatics 17, 1213–1223 (2001)
Meijering, E., Smal, I., Danuser, G.: Tracking in molecular bioimaging. IEEE Signal Processing Magazine 23(3), 46–53 (2006)
Peng, H., Myers, E.W.: Comparing in situ mRNA expression patterns of drosophila embryos. In: 8th Intl. Conf. on Computational molecular biology, pp. 157–166 (2004)
Zhou, J., Peng, H.: Automatic recognition and annotation of gene expression patterns of fly embryos. Bioinformatics 23(5), 589–596 (2007)
Lécuyer, E., Tomancak, P.: Mapping the gene expression universe. Current Opinion in Genetics & Development 18(6), 506–512 (2008)
Boland, M.V., Murphy, R.F.: After Sequencing: Quantitative Analysis of Protein Localization. IEEE Engineering in Medicine and Biology Magazine 18(5), 115–119 (1999)
Chen, X., Murphy, R.F.: Objective Clustering of Proteins Based on Subcellular Location Patterns. Journal Biomedical Biotechnology 2005(2), 87–95 (2005)
Roques, E., Murphy, R.: Objective evaluation of differences in protein subcellular distribution. Traffic 3, 61–65 (2002)
Murphy, R.F.: Putting proteins on the map. Nature Biotechnology 24, 1223–1224 (2006)
Conrad, C., Erfle, H., Warnat, P., Daigle, N., Lörch, T., Ellenberg, J., Pepperkok, R., Eils, R.: Automatic Identification of Subcellular Phenotypes on Human Cell Arrays. Genome Research 14, 1130–1136 (2004)
Gasparri, F., Mariani, M., Sola, F., Galvani, A.: Quantification of the Proliferation Index of Human Dermal Fibroblast Cultures with the ArrayScan High-Content Screening Reader. Journal of Biomolecular Screening 9(3), 232–243 (2004)
Glory, E., Murphy, R.F.: Automated Subcellular Location Determination and High Throughput Microscopy. Developmental Cell 12(1), 7–16 (2007)
Hamilton, N.A., Pantelic, R.S., Hanson, K., Teasdale, R.D.: Fast automated cell phenotype image classification. BMC Bioinformatics 8, 110 (2007)
Huang, K., Lin, J., Gajnak, J., Murphy, R.F.: Image Content-based Retrieval and Automated Interpretation of Fluorescence Microscope Images via the Protein Subcellular Location Image Database. In: IEEE Intl. Symp. Biomedical Imaging, pp. 325–328 (2002)
Lein, E., Hawrylycz, M., Ao, N.: Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2006)
Murphy, R.F.: Systematic description of subcellular location for integration with proteomics databases and systems biology modeling. In: IEEE Intl. Symp. Biomedical Imaging, pp. 1052–1055 (2007)
Nattkemper, T.W.: Automatic segmentation of digital micrographs: A survey. Studies in health technology and informatics 107(2), 847–851 (2004)
Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microsope cell images: A hand-segmented dataset and comparison of algorithms. In: IEEE Intl. Symp. Biomedical Imaging, pp. 518–521 (2009)
Jones, T.R., Carpenter, A.E., Golland, P.: Voronoi-based segmentation of cells on image manifolds. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 535–543. Springer, Heidelberg (2005)
Beucher, S.: Watersheds of functions and picture segmentation. In: IEEE Intl Conf. on Acoustics, Speech and Signal Processing, Paris, pp. 1928–1931 (1982)
Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A 56A(1), 23–36 (2003)
Huang, K., Murphy, R.F.: Automated Classification of Subcellular Patterns in Multicell images without Segmentation into Single Cells. In: IEEE Intl. Symp. Biomedical Imaging, pp. 1139–1142 (2004)
Murphy, R., Velliste, M., Porreca, G.: Robust Numerical Features for Description and Classification of Subcellular Location Patterns in Fluorescence Microscope Images. Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 35, 311–321 (2003)
Nattkemper, T.W., Twellmann, T., Schubert, W., Ritter, H.J.: Human vs. machine: Evaluation of fluorescence micrographs. Computers in Biology and Medicine 33(1), 31–43 (2003)
Allen, T.D., Potten, C.S.: Significance of cell shape in tissue architecture. Nature 264(5586), 545–547 (1976)
Olson, A.C., Larson, N.M., Heckman, C.A.: Classification of cultured mammalian cells by shape analysis and pattern recognition. Proceedings of the National Academy of Sciences (USA) 77(3), 1516–1520 (1980)
Pincus, Z., Theriot, J.A.: Comparison of quantitative methods for cell-shape analysis. Journal of microscopy 227, 140–156 (2007)
Rohde, G.K., Ribeiro, A.J.S., Dahl, K.N., Murphy, R.F.: Deformation-based nuclear morphometry: capturing nuclear shape variation in hela cells. Cytometry Part A 73A(4), 341–350 (2008)
Peng, T., Wang, W., Rohde, G.K., Murphy, R.F.: Instance-based generative biological shape modeling. In: IEEE Intl. Symp. Biomedical Imaging, vol. 1, pp. 690–693 (2009)
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)
Albertini, M.C., Teodori, L., Piatti, E., Piacentini, M.P., Accorsi, A., Rocchi, M.B.L.: Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry Part A 52A(1), 12–18 (2003)
Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Medical Imaging 26(7), 1010–1016 (2007)
Zhao, T., Velliste, M., Boland, M., Murphy, R.F.: Object type recognition for automated analysis of protein subcellular location. IEEE Trans. on Image Processing 14(9), 1351–1359 (2005)
Peng, T., Bonamy, G.M., Glory, E., Daniel Rines, S.K.C., Murphy, R.F.: Automated unmixing of subcellular patterns: Determining the distribution of probes between different subcellular locations. Proceedings of the National Academy of Sciences, USA (2009) (in press)
Coelho, L.P., Murphy, R.F.: Unsupervised unmixing of subcellular location patterns. In: Proceedings of ICML-UAI-COLT 2009 Workshop on Automated Interpretation and Modeling of Cell Images (Cell Image Learning), Montreal, Canada (2009)
García Osuna, E., Hua, J., Bateman, N.W., Zhao, T., Berget, P.B., Murphy, R.F.: Large-scale automated analysis of location patterns in randomly tagged 3T3 cells. Annals of Biomedical Engineering 35, 1081–1087 (2007)
Habeler, G., Natter, K., Thallinger, G.G., Crawford, M.E., Kohlwein, S.D., Trajanoski, Z.: YPL.db: the Yeast Protein Localization database. Nucleic Acids Research 30(1), 80–83 (2002)
Kals, M., Natter, K., Thallinger, G.G., Trajanoski, Z., Kohlwein, S.D.: Ypl.db2: the yeast protein localization database, version 2.0. Yeast 22(3), 213–218 (2005)
Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O’Shea, E.K.: Global analysis of protein localization in budding yeast. Nature 425(6959), 686–691 (2003)
Chen, S.C., Zhao, T., Gordon, G., Murphy, R.: Automated image analysis of protein localization in budding yeast. Bioinformatics 23(13), 66–71 (2007)
Bannasch, D., Mehrle, A., Glatting, K.H., Pepperkok, R., Poustka, A., Wiemann, S.: LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Research 32, D505–D508 (2004)
del Val, C., Mehrle, A., Falkenhahn, M., Seiler, M., Glatting, K.H., Poustka, A., Suhai, S., Wiemann, S.: High-throughput protein analysis integrating bioinformatics and experimental assays. Nucleic Acids Research 32(2), 742–748 (2004)
Simpson, J., Wellenreuther, R., Poustka, A., Pepperkok, R., Wiemann, S.: Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO reports 1(3), 287–292 (2000)
Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C.A.K., Amini, B., Andersen, E., Andersson, A.C., Angelidou, P., Asplund, A., Asplund, C., Berglund, L., Bergstrom, K., Brumer, H., Cerjan, D., Ekstrom, M., Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M., Bjorklund, M.G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C., Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K., Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K., Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E., Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J., Runeson, M., Sivertsson, A., Skollermo, A., Steen, J., Stenvall, M., Sterky, F., Stromberg, S., Sundberg, M., Tegel, H., Tourle, S., Wahlund, E., Walden, A., Wan, J., Wernerus, H., Westberg, J., Wester, K., Wrethagen, U., Xu, L.L., Hober, S., Ponten, F.: A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Molecular & Cellular Proteomics 4(12), 1920–1932 (2005)
Berglund, L., Björling, E., Oksvold, P., Fagerberg, L., Asplund, A., Szigyarto, C.A.K., Persson, A., Ottosson, J., Wernérus, H., Nilsson, P., Lundberg, E., Sivertsson, A., Navani, S., Wester, K., Kampf, C., Hober, S., Pontén, F., Uhlén, M.: A genecentric Human Protein Atlas for expression profiles based on antibodies. Molecular & cellular proteomics 7(10), 2019–2027 (2008)
Lundberg, E., Sundberg, M., Gräslund, T., Uhlén, M., Svahn, H.A.: A novel method for reproducible fluorescent labeling of small amounts of antibodies on solid phase. Journal of Immunological Methods 322(1-2), 40–49 (2007)
Newberg, J., Li, J., Rao, A., Ponten, F., Uhlen, M., Lundberg, E., Murphy, R.F.: Automated analysis of human protein atlas immunofluorescence images. In: IEEE Intl. Symp. Biomedical Imaging, pp. 1023–1026 (2009)
Newberg, J., Hua, J., Murphy, R.F.: Location Proteomics: Systematic Determination of Protein Subcellular Location. In: Systems Biology, vol. 500, pp. 313–332. Humana Press (2009)
Glory, E., Newberg, J., Murphy, R.F.: Automated comparison of protein subcellular location patterns between images of normal and cancerous tissues. In: IEEE Intl. Symp. Biomedical Imaging, pp. 304–307 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Coelho, L.P., Glory-Afshar, E., Kangas, J., Quinn, S., Shariff, A., Murphy, R.F. (2010). Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns. In: Blaschke, C., Shatkay, H. (eds) Linking Literature, Information, and Knowledge for Biology. Lecture Notes in Computer Science(), vol 6004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13131-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-13131-8_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13130-1
Online ISBN: 978-3-642-13131-8
eBook Packages: Computer ScienceComputer Science (R0)