[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns

  • Conference paper
Linking Literature, Information, and Knowledge for Biology

Abstract

The field of bioimage informatics concerns the development and use of methods for computational analysis of biological images. Traditionally, analysis of such images has been done manually. Manual annotation is, however, slow, expensive, and often highly variable from one expert to another. Furthermore, with modern automated microscopes, hundreds to thousands of images can be collected per hour, making manual analysis infeasible.

This field borrows from the pattern recognition and computer vision literature (which contain many techniques for image processing and recognition), but has its own unique challenges and tradeoffs.

Fluorescence microscopy images represent perhaps the largest class of biological images for which automation is needed. For this modality, typical problems include cell segmentation, classification of phenotypical response, or decisions regarding differentiated responses (treatment vs. control setting). This overview focuses on the problem of subcellular location determination as a running example, but the techniques discussed are often applicable to other problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 49.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perlman, Z.E., Slack, M.D., Feng, Y., Mitchison, T.J., Wu, L.F., Altschuler, S.J.: Multidimensional Drug Profiling By Automated Microscopy. Science 306(5699), 1194–1198 (2004)

    Article  Google Scholar 

  2. Boland, M.V., Murphy, R.F.: A Neural Network Classifier Capable of Recognizing the Patterns of all Major Subcellular Structures in Fluorescence Microscope Images of HeLa Cells. Bioinformatics 17, 1213–1223 (2001)

    Article  Google Scholar 

  3. Meijering, E., Smal, I., Danuser, G.: Tracking in molecular bioimaging. IEEE Signal Processing Magazine 23(3), 46–53 (2006)

    Article  Google Scholar 

  4. Peng, H., Myers, E.W.: Comparing in situ mRNA expression patterns of drosophila embryos. In: 8th Intl. Conf. on Computational molecular biology, pp. 157–166 (2004)

    Google Scholar 

  5. Zhou, J., Peng, H.: Automatic recognition and annotation of gene expression patterns of fly embryos. Bioinformatics 23(5), 589–596 (2007)

    Article  MathSciNet  Google Scholar 

  6. Lécuyer, E., Tomancak, P.: Mapping the gene expression universe. Current Opinion in Genetics & Development 18(6), 506–512 (2008)

    Article  Google Scholar 

  7. Boland, M.V., Murphy, R.F.: After Sequencing: Quantitative Analysis of Protein Localization. IEEE Engineering in Medicine and Biology Magazine 18(5), 115–119 (1999)

    Article  Google Scholar 

  8. Chen, X., Murphy, R.F.: Objective Clustering of Proteins Based on Subcellular Location Patterns. Journal Biomedical Biotechnology 2005(2), 87–95 (2005)

    Article  MATH  Google Scholar 

  9. Roques, E., Murphy, R.: Objective evaluation of differences in protein subcellular distribution. Traffic 3, 61–65 (2002)

    Article  Google Scholar 

  10. Murphy, R.F.: Putting proteins on the map. Nature Biotechnology 24, 1223–1224 (2006)

    Article  Google Scholar 

  11. Conrad, C., Erfle, H., Warnat, P., Daigle, N., Lörch, T., Ellenberg, J., Pepperkok, R., Eils, R.: Automatic Identification of Subcellular Phenotypes on Human Cell Arrays. Genome Research 14, 1130–1136 (2004)

    Article  Google Scholar 

  12. Gasparri, F., Mariani, M., Sola, F., Galvani, A.: Quantification of the Proliferation Index of Human Dermal Fibroblast Cultures with the ArrayScan High-Content Screening Reader. Journal of Biomolecular Screening 9(3), 232–243 (2004)

    Article  Google Scholar 

  13. Glory, E., Murphy, R.F.: Automated Subcellular Location Determination and High Throughput Microscopy. Developmental Cell 12(1), 7–16 (2007)

    Article  Google Scholar 

  14. Hamilton, N.A., Pantelic, R.S., Hanson, K., Teasdale, R.D.: Fast automated cell phenotype image classification. BMC Bioinformatics 8, 110 (2007)

    Article  Google Scholar 

  15. Huang, K., Lin, J., Gajnak, J., Murphy, R.F.: Image Content-based Retrieval and Automated Interpretation of Fluorescence Microscope Images via the Protein Subcellular Location Image Database. In: IEEE Intl. Symp. Biomedical Imaging, pp. 325–328 (2002)

    Google Scholar 

  16. Lein, E., Hawrylycz, M., Ao, N.: Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2006)

    Article  Google Scholar 

  17. Murphy, R.F.: Systematic description of subcellular location for integration with proteomics databases and systems biology modeling. In: IEEE Intl. Symp. Biomedical Imaging, pp. 1052–1055 (2007)

    Google Scholar 

  18. Nattkemper, T.W.: Automatic segmentation of digital micrographs: A survey. Studies in health technology and informatics 107(2), 847–851 (2004)

    Google Scholar 

  19. Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microsope cell images: A hand-segmented dataset and comparison of algorithms. In: IEEE Intl. Symp. Biomedical Imaging, pp. 518–521 (2009)

    Google Scholar 

  20. Jones, T.R., Carpenter, A.E., Golland, P.: Voronoi-based segmentation of cells on image manifolds. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 535–543. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Beucher, S.: Watersheds of functions and picture segmentation. In: IEEE Intl Conf. on Acoustics, Speech and Signal Processing, Paris, pp. 1928–1931 (1982)

    Google Scholar 

  22. Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A 56A(1), 23–36 (2003)

    Article  Google Scholar 

  23. Huang, K., Murphy, R.F.: Automated Classification of Subcellular Patterns in Multicell images without Segmentation into Single Cells. In: IEEE Intl. Symp. Biomedical Imaging, pp. 1139–1142 (2004)

    Google Scholar 

  24. Murphy, R., Velliste, M., Porreca, G.: Robust Numerical Features for Description and Classification of Subcellular Location Patterns in Fluorescence Microscope Images. Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 35, 311–321 (2003)

    Article  MATH  Google Scholar 

  25. Nattkemper, T.W., Twellmann, T., Schubert, W., Ritter, H.J.: Human vs. machine: Evaluation of fluorescence micrographs. Computers in Biology and Medicine 33(1), 31–43 (2003)

    Article  Google Scholar 

  26. Allen, T.D., Potten, C.S.: Significance of cell shape in tissue architecture. Nature 264(5586), 545–547 (1976)

    Article  Google Scholar 

  27. Olson, A.C., Larson, N.M., Heckman, C.A.: Classification of cultured mammalian cells by shape analysis and pattern recognition. Proceedings of the National Academy of Sciences (USA) 77(3), 1516–1520 (1980)

    Article  Google Scholar 

  28. Pincus, Z., Theriot, J.A.: Comparison of quantitative methods for cell-shape analysis. Journal of microscopy 227, 140–156 (2007)

    Article  MathSciNet  Google Scholar 

  29. Rohde, G.K., Ribeiro, A.J.S., Dahl, K.N., Murphy, R.F.: Deformation-based nuclear morphometry: capturing nuclear shape variation in hela cells. Cytometry Part A 73A(4), 341–350 (2008)

    Article  Google Scholar 

  30. Peng, T., Wang, W., Rohde, G.K., Murphy, R.F.: Instance-based generative biological shape modeling. In: IEEE Intl. Symp. Biomedical Imaging, vol. 1, pp. 690–693 (2009)

    Google Scholar 

  31. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  32. Albertini, M.C., Teodori, L., Piatti, E., Piacentini, M.P., Accorsi, A., Rocchi, M.B.L.: Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry Part A 52A(1), 12–18 (2003)

    Article  Google Scholar 

  33. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Medical Imaging 26(7), 1010–1016 (2007)

    Article  Google Scholar 

  34. Zhao, T., Velliste, M., Boland, M., Murphy, R.F.: Object type recognition for automated analysis of protein subcellular location. IEEE Trans. on Image Processing 14(9), 1351–1359 (2005)

    Article  Google Scholar 

  35. Peng, T., Bonamy, G.M., Glory, E., Daniel Rines, S.K.C., Murphy, R.F.: Automated unmixing of subcellular patterns: Determining the distribution of probes between different subcellular locations. Proceedings of the National Academy of Sciences, USA (2009) (in press)

    Google Scholar 

  36. Coelho, L.P., Murphy, R.F.: Unsupervised unmixing of subcellular location patterns. In: Proceedings of ICML-UAI-COLT 2009 Workshop on Automated Interpretation and Modeling of Cell Images (Cell Image Learning), Montreal, Canada (2009)

    Google Scholar 

  37. García Osuna, E., Hua, J., Bateman, N.W., Zhao, T., Berget, P.B., Murphy, R.F.: Large-scale automated analysis of location patterns in randomly tagged 3T3 cells. Annals of Biomedical Engineering 35, 1081–1087 (2007)

    Article  Google Scholar 

  38. Habeler, G., Natter, K., Thallinger, G.G., Crawford, M.E., Kohlwein, S.D., Trajanoski, Z.: YPL.db: the Yeast Protein Localization database. Nucleic Acids Research 30(1), 80–83 (2002)

    Article  Google Scholar 

  39. Kals, M., Natter, K., Thallinger, G.G., Trajanoski, Z., Kohlwein, S.D.: Ypl.db2: the yeast protein localization database, version 2.0. Yeast 22(3), 213–218 (2005)

    Article  Google Scholar 

  40. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O’Shea, E.K.: Global analysis of protein localization in budding yeast. Nature 425(6959), 686–691 (2003)

    Article  Google Scholar 

  41. Chen, S.C., Zhao, T., Gordon, G., Murphy, R.: Automated image analysis of protein localization in budding yeast. Bioinformatics 23(13), 66–71 (2007)

    Article  Google Scholar 

  42. Bannasch, D., Mehrle, A., Glatting, K.H., Pepperkok, R., Poustka, A., Wiemann, S.: LIFEdb: a database for functional genomics experiments integrating information from external sources, and serving as a sample tracking system. Nucleic Acids Research 32, D505–D508 (2004)

    Article  Google Scholar 

  43. del Val, C., Mehrle, A., Falkenhahn, M., Seiler, M., Glatting, K.H., Poustka, A., Suhai, S., Wiemann, S.: High-throughput protein analysis integrating bioinformatics and experimental assays. Nucleic Acids Research 32(2), 742–748 (2004)

    Article  Google Scholar 

  44. Simpson, J., Wellenreuther, R., Poustka, A., Pepperkok, R., Wiemann, S.: Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO reports 1(3), 287–292 (2000)

    Article  Google Scholar 

  45. Uhlen, M., Bjorling, E., Agaton, C., Szigyarto, C.A.K., Amini, B., Andersen, E., Andersson, A.C., Angelidou, P., Asplund, A., Asplund, C., Berglund, L., Bergstrom, K., Brumer, H., Cerjan, D., Ekstrom, M., Elobeid, A., Eriksson, C., Fagerberg, L., Falk, R., Fall, J., Forsberg, M., Bjorklund, M.G., Gumbel, K., Halimi, A., Hallin, I., Hamsten, C., Hansson, M., Hedhammar, M., Hercules, G., Kampf, C., Larsson, K., Lindskog, M., Lodewyckx, W., Lund, J., Lundeberg, J., Magnusson, K., Malm, E., Nilsson, P., Odling, J., Oksvold, P., Olsson, I., Oster, E., Ottosson, J., Paavilainen, L., Persson, A., Rimini, R., Rockberg, J., Runeson, M., Sivertsson, A., Skollermo, A., Steen, J., Stenvall, M., Sterky, F., Stromberg, S., Sundberg, M., Tegel, H., Tourle, S., Wahlund, E., Walden, A., Wan, J., Wernerus, H., Westberg, J., Wester, K., Wrethagen, U., Xu, L.L., Hober, S., Ponten, F.: A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Molecular & Cellular Proteomics 4(12), 1920–1932 (2005)

    Article  Google Scholar 

  46. Berglund, L., Björling, E., Oksvold, P., Fagerberg, L., Asplund, A., Szigyarto, C.A.K., Persson, A., Ottosson, J., Wernérus, H., Nilsson, P., Lundberg, E., Sivertsson, A., Navani, S., Wester, K., Kampf, C., Hober, S., Pontén, F., Uhlén, M.: A genecentric Human Protein Atlas for expression profiles based on antibodies. Molecular & cellular proteomics 7(10), 2019–2027 (2008)

    Article  Google Scholar 

  47. Lundberg, E., Sundberg, M., Gräslund, T., Uhlén, M., Svahn, H.A.: A novel method for reproducible fluorescent labeling of small amounts of antibodies on solid phase. Journal of Immunological Methods 322(1-2), 40–49 (2007)

    Article  Google Scholar 

  48. Newberg, J., Li, J., Rao, A., Ponten, F., Uhlen, M., Lundberg, E., Murphy, R.F.: Automated analysis of human protein atlas immunofluorescence images. In: IEEE Intl. Symp. Biomedical Imaging, pp. 1023–1026 (2009)

    Google Scholar 

  49. Newberg, J., Hua, J., Murphy, R.F.: Location Proteomics: Systematic Determination of Protein Subcellular Location. In: Systems Biology, vol. 500, pp. 313–332. Humana Press (2009)

    Google Scholar 

  50. Glory, E., Newberg, J., Murphy, R.F.: Automated comparison of protein subcellular location patterns between images of normal and cancerous tissues. In: IEEE Intl. Symp. Biomedical Imaging, pp. 304–307 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coelho, L.P., Glory-Afshar, E., Kangas, J., Quinn, S., Shariff, A., Murphy, R.F. (2010). Principles of Bioimage Informatics: Focus on Machine Learning of Cell Patterns. In: Blaschke, C., Shatkay, H. (eds) Linking Literature, Information, and Knowledge for Biology. Lecture Notes in Computer Science(), vol 6004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13131-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13131-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13130-1

  • Online ISBN: 978-3-642-13131-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics