[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Agglomerate Algorithm for Mining Overlapping and Hierarchical Functional Modules in Protein Interaction Networks

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6053))

Included in the following conference series:

Abstract

Real PPI networks commonly have large size. Functional modules in them are usually overlapping and hierarchical. So it is significant to identify both overlapping and hierarchical modules with low time complexity. However previous methods can not do it. A new agglomerative algorithm, MOMA, is proposed in the paper to resolve this problem. MOMA classifies subgraphs into clusters and vertices. Clusters can overlap each other. MOMA identifies overlapping and hierarchical functional modules by merging overlapping subgraphs. Its time complexity is O(N 2). We apply MOMA, G-N algorithm and Cfinder on the yeast core PPI network. Comparing with G-N algorithm, MOMA can identify overlapping modules. Comparing with Cfinder, MOMA can identify hierarchical modules. Distributions of the lowest P-value show that the module set identified by MOMA has the stronger biological significance than those identified by the other two algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xenarios, I., Salwínski, L., et al.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

  2. Mewes, H.W., Frishman, D., Gruber, C., Geier, B., Haase, D., Kaps, A.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000)

    Article  Google Scholar 

  3. Issel-Tarver, L., Christie, K.R., Dolinski, K., et al.: Saccharomyces Genome Database. Methods Enzymol. 350, 329–346 (2002)

    Article  Google Scholar 

  4. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Res. 5, 101–114 (2004)

    Article  Google Scholar 

  5. Chen, J.C., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)

    Article  Google Scholar 

  6. Luo, F., Yang, Y., Chen, C.F., Chang, R., Zhou, J., Scheuermann, R.H.: Modular organization of protein interaction networks. Bioinformatics 23(2), 207–214 (2007)

    Article  Google Scholar 

  7. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133 (2003)

    Article  Google Scholar 

  8. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Girvan, M., Newman, M.E.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  10. Li, M., Wang, J.X., Chen, J.: A Fast Agglomerative algorithm for Mining Functional Modules in Protein Interaction Networks. In: BMEI 2008, pp. 3–7. IEEE press, Los Alamitos (2008)

    Google Scholar 

  11. Li, M., Wang, J.X., Chen, J.: Hierarchical organization of functional modules in weighted protein interaction networks using clustering coefficient. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNBIP, vol. 5542, pp. 75–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl.Acad. Sci. USA 101, 2658–2663 (2004)

    Article  Google Scholar 

  13. Palla, G., Dernyi, I., Farkas, I.J., Vicsek, T.: Uncoverring the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  14. Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)

    Article  Google Scholar 

  15. Bader, G.D., Hogue, C.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  16. Altaf-UI-Amin, M., Shinbo, Y., Mihara, K., et al.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7, 207 (2006)

    Article  Google Scholar 

  17. Shen, H., Cheng, X., Cai, K.: Detect overlapping and hierarchical community structure in networks. Physica A 388(8), 1706–1721 (2009)

    Article  Google Scholar 

  18. Pržulj, N., Wigle, D.A., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  19. Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5(2), 444–449 (2005)

    Article  Google Scholar 

  20. Yook, S., Oltvai, Z., Barabási, A.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)

    Article  Google Scholar 

  21. King, A.D., Prz̧ulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)

    Article  Google Scholar 

  22. Cho, Y.R., Hwang, W., Ramanathan, M., et al.: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265 (2007)

    Article  Google Scholar 

  23. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25, 25–29 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, J., Wang, J., Chen, J., Li, M., Chen, G. (2010). An Agglomerate Algorithm for Mining Overlapping and Hierarchical Functional Modules in Protein Interaction Networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds) Bioinformatics Research and Applications. ISBRA 2010. Lecture Notes in Computer Science(), vol 6053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13078-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13078-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13077-9

  • Online ISBN: 978-3-642-13078-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics