Abstract
Real PPI networks commonly have large size. Functional modules in them are usually overlapping and hierarchical. So it is significant to identify both overlapping and hierarchical modules with low time complexity. However previous methods can not do it. A new agglomerative algorithm, MOMA, is proposed in the paper to resolve this problem. MOMA classifies subgraphs into clusters and vertices. Clusters can overlap each other. MOMA identifies overlapping and hierarchical functional modules by merging overlapping subgraphs. Its time complexity is O(N 2). We apply MOMA, G-N algorithm and Cfinder on the yeast core PPI network. Comparing with G-N algorithm, MOMA can identify overlapping modules. Comparing with Cfinder, MOMA can identify hierarchical modules. Distributions of the lowest P-value show that the module set identified by MOMA has the stronger biological significance than those identified by the other two algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xenarios, I., Salwínski, L., et al.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)
Mewes, H.W., Frishman, D., Gruber, C., Geier, B., Haase, D., Kaps, A.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000)
Issel-Tarver, L., Christie, K.R., Dolinski, K., et al.: Saccharomyces Genome Database. Methods Enzymol. 350, 329–346 (2002)
Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Res. 5, 101–114 (2004)
Chen, J.C., Yuan, B.: Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)
Luo, F., Yang, Y., Chen, C.F., Chang, R., Zhou, J., Scheuermann, R.H.: Modular organization of protein interaction networks. Bioinformatics 23(2), 207–214 (2007)
Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133 (2003)
Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)
Girvan, M., Newman, M.E.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)
Li, M., Wang, J.X., Chen, J.: A Fast Agglomerative algorithm for Mining Functional Modules in Protein Interaction Networks. In: BMEI 2008, pp. 3–7. IEEE press, Los Alamitos (2008)
Li, M., Wang, J.X., Chen, J.: Hierarchical organization of functional modules in weighted protein interaction networks using clustering coefficient. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNBIP, vol. 5542, pp. 75–86. Springer, Heidelberg (2009)
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl.Acad. Sci. USA 101, 2658–2663 (2004)
Palla, G., Dernyi, I., Farkas, I.J., Vicsek, T.: Uncoverring the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)
Adamcsek, B., Palla, G., Farkas, I.J., Derényi, I., Vicsek, T.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)
Bader, G.D., Hogue, C.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)
Altaf-UI-Amin, M., Shinbo, Y., Mihara, K., et al.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7, 207 (2006)
Shen, H., Cheng, X., Cai, K.: Detect overlapping and hierarchical community structure in networks. Physica A 388(8), 1706–1721 (2009)
Pržulj, N., Wigle, D.A., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)
Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5(2), 444–449 (2005)
Yook, S., Oltvai, Z., Barabási, A.: Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942 (2004)
King, A.D., Prz̧ulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013–3020 (2004)
Cho, Y.R., Hwang, W., Ramanathan, M., et al.: Semantic integration to identify overlapping functional modules in protein interaction networks. BMC Bioinformatics 8, 265 (2007)
Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25, 25–29 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ren, J., Wang, J., Chen, J., Li, M., Chen, G. (2010). An Agglomerate Algorithm for Mining Overlapping and Hierarchical Functional Modules in Protein Interaction Networks. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds) Bioinformatics Research and Applications. ISBRA 2010. Lecture Notes in Computer Science(), vol 6053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13078-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-13078-6_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-13077-9
Online ISBN: 978-3-642-13078-6
eBook Packages: Computer ScienceComputer Science (R0)