[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hierarchical Approach to Emotion Recognition and Classification in Texts

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6085))

Included in the following conference series:

  • 2787 Accesses

Abstract

We explore the task of automatic classification of texts by the emotions expressed. We consider how the presence of neutral instances affects the performance of distinguishing between emotions. Another facet of the evaluation concerns the relation between polarity and emotions. We apply a novel approach which arranges neutrality, polarity and emotions hierarchically. This method significantly outperforms the corresponding “flat” approach which does not take into account the hierarchical information. We also compare corpus-based and lexical-based feature sets and we choose the most appropriate set of features to be used in our hierarchical classification experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wiebe, J., Wilson, T., Cardie, C.: Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation 39, 165–210 (2005)

    Article  Google Scholar 

  2. Ekman, P.: An Argument for Basic Emotions. Cognition and Emotion 6, 169–200 (1992)

    Article  Google Scholar 

  3. Aman, S.: Identifying Expressions of Emotion in Text. Master’s thesis, University of Ottawa, Ottawa, Canada (2007)

    Google Scholar 

  4. Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Compositionality Principle in Recognition of Fine-Grained Emotions from Text. In: Proc. Third International ICWSM Conference, pp. 278–281 (2009)

    Google Scholar 

  5. Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text- based emotion prediction. In: Proc. Joint Conference on Human Language Technology / Empirical Methods in Natural Language Processing (HLT/EMNLP 2005), Vancouver, Canada, pp. 579–586 (2005)

    Google Scholar 

  6. Strapparava, C., Mihalcea, R.: SemEval-2007 Task 14: Affective Text (2007)

    Google Scholar 

  7. Strapparava, C., Mihalcea, R.: Learning to Identify Emotions in Text. In: Proc. ACM Symposium on Applied computing, Fortaleza, Brazil, pp. 1556–1560 (2008)

    Google Scholar 

  8. Chaumartin, F.: Upar7: A knowledge-based system for headline sentiment tagging. In: Proc. SemEval 2007, Prague, Czech Republic (June 2007)

    Google Scholar 

  9. Kozareva, Z., Navarro, B., Vazquez, S., Montoyo, A.: Ua-zbsa: A headline emotion classification through web information. In: Proc. SemEval 2007, Prague, Czech Republic (June 2007)

    Google Scholar 

  10. Katz, P., Singleton, M., Wicentowski, R.: Swat-mp: the semeval-2007 systems for task 5 and task 14. In: Proc. SemEval 2007, Prague, Czech Republic (June 2007)

    Google Scholar 

  11. Aman, S., Szpakowicz, S.: Using Roget’s Thesaurus for Fine-grained Emotion Recognition. In: Proc. Third International Joint Conf. on Natural Language Processing (IJCNLP), Hyderabad, India, pp. 296–302 (2008)

    Google Scholar 

  12. Kennedy, A., Inkpen, D.: Sentiment classification of movie reviews using contextual valence shifter. Computational Intelligence 22, 110–125 (2006)

    Article  MathSciNet  Google Scholar 

  13. Keshtkar, F., Inkpen, D.: Using Sentiment Orientation Features for Mood Classification in Blog Corpus. In: IEEE International Conf. on Natural Language Processing and Knowledge Engineering, Dalian, China, September 24-27 (2009)

    Google Scholar 

  14. Koller, D., Sahami, M.: Hierarchically Classifying Documents Using Very Few Words. In: Proc. International Conference on Machine Learning, pp. 170–178 (1997)

    Google Scholar 

  15. Kiritchenko, S., Matwin, S., Nock, R., Fazel Famili, A.: Learning and Evaluation in the Presence of Class Hierarchies: Application to Text Categorization. LNCS, pp. 395–406. Springer, Heidelberg (2006)

    Google Scholar 

  16. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis. Computational Linguistics 35(3), 399–433 (2009)

    Article  Google Scholar 

  17. Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proc. 4th International Conference on Language Resources and Evaluation (LREC 2004), Lisbon, Portugal, pp. 1083–1086 (2004)

    Google Scholar 

  18. Jarmasz, M., Szpakowicz, S.: Roget’s Thesaurus and Semantic Similarity. In: Nicolov, N., Bontcheva, K., Angelova, G., Mitkov, R. (eds.) Recent Advances in Natural Language Processing III: Selected Papers from RANLP, John Benjamins, Current Issues in Linguistic Theory, vol. 260, pp. 111–120 (2003)

    Google Scholar 

  19. Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proc. Conference on Empirical Methods in Natural Language Processing (EMNLP 2003), Sapporo, pp. 105–112 (2003)

    Google Scholar 

  20. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghazi, D., Inkpen, D., Szpakowicz, S. (2010). Hierarchical Approach to Emotion Recognition and Classification in Texts. In: Farzindar, A., Kešelj, V. (eds) Advances in Artificial Intelligence. Canadian AI 2010. Lecture Notes in Computer Science(), vol 6085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13059-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13059-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13058-8

  • Online ISBN: 978-3-642-13059-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics