[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Binding Machine Learning Models and OPC Technology for Evaluating Solar Energy Systems

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

This paper describes a framework to develop software to monitor and evaluate solar installations using machine-learning models and OPC technology. The proposed framework solves both the problem of monitoring solar installations when there are devices from different manufacturers and the problem of evaluating solar installations whose operation changes throughout the plant operation period. Moreover, the evaluation programs can be integrated with the monitoring problems. The proposed solution is based on the use of machine-learning models to evaluate the plants and on the use of OPC technology to integrate the monitoring program with the evaluation program. This framework has been used for monitoring and evaluating several real photovoltaic solar plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wills, L., et al.: An Open Platform for Reconfigurable Control. IEEE Control Systems 21(3), 49–64 (2001)

    Article  Google Scholar 

  2. Feldmann, K., Stockel, T., Gaberstumpf, B.: Conception and Implementation of an Object Request Broker for the Integration of the Process Level in Manufacturing Systems. J. Systems Ingetration 10(2), 169–180 (2001)

    Google Scholar 

  3. Raptis, D., Spinellis, D., Katsikas, S.: Multi-Technology Distributed Objects and Their Integration. Computer Standards and Interfaces 23(3), 157–168 (2001)

    Article  Google Scholar 

  4. Schellenberg, F.M., Toublan, O., Capodieci, L., Socha, B.: Adoption of OPC and the Impact on Design and Layout. In: DAC 2001, Las Vegas, Nevada, USA, June 18-22 (2001)

    Google Scholar 

  5. Liu, J., Lim, K.W., Ho, W.K., Tan, K.C., Tay, A., Srinivasan, R.: IEEE Software 22(6), 54–59 (2005)

    Google Scholar 

  6. Schwarz, M.H., Boercsoek, J.: International Journal of Computers 1(4), 245 (2007)

    Google Scholar 

  7. Schwarz, M.H., Boercsoek, J.: WSEAS Transactions on Systems and Control 3(3), 195 (2008)

    Google Scholar 

  8. Horstmann, M., Kirtland, M.: DCOM Architecture, http://msdn.microsoft.com/library/

  9. The World Wide Web Consortium (W3C) XML Specifications: http://www.w3.org/XML/

  10. Tan, V.V., Yoo, D.S., Yi, M.J., Modern, M.J.: Proceedings 14th European Photovoltaic Solar Energy Conference, vol. 115 (2007)

    Google Scholar 

  11. Anderson, J.A.: An Introduction to Neural Networks. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  12. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  13. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to The Theory of Neural Computing. Addison-Wesley Publishing Company, Reading (1991)

    Google Scholar 

  14. Nissen, S.: Implementation of a Fast Artificial Neural Network Library (fann), Graduate project, Department of Computer Science. University of Copenhagen, DIKU (October 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinez-Marchena, I., Mora-Lopez, L., Sanchez, P.J., Sidrach-de-Cardona, M. (2010). Binding Machine Learning Models and OPC Technology for Evaluating Solar Energy Systems. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13033-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13033-5_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13032-8

  • Online ISBN: 978-3-642-13033-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics