[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Graph-Theoretic Image Alignment Using Topological Features

  • Conference paper
Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6026))

  • 712 Accesses

Abstract

In this paper, we introduce a feature-based image alignment method using topological singularities. The main idea behind our proposed framework is to encode a medical image into a set of Morse critical points. Then an entropic dissimilarity measure between the Morse features of the target and the reference images is maximized to bring the data into alignment. We also show that maximizing this divergence measure leads to minimizing the total length of the joint minimal spanning tree between the features of the misaligned medical images. Illustrative experimental results clearly show the much improved performance and the registration accuracy of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burbea, J., Rao, C.R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. on Information Theory 28, 489–495 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Corici, D., Astola, J.: Information divergence measures-for detection of borders between coding and noncoding DNA regions using recursive entropic segmentation. In: Proc. IEEE Workshop Statistical Signal Processing, pp. 577–580 (2003)

    Google Scholar 

  3. Fomenco, A.T., Kunii, T.L.: Topological Modeling for Visualization. Springer, Tokyo (1997)

    Google Scholar 

  4. Havrda, M.E., Charvát, F.: Quantification method of classification processes: concept of structural α-entropy. Kybernitica 3, 30–35 (1967)

    MATH  Google Scholar 

  5. He, Y., Ben Hamza, A., Krim, H.: A generalized divergence measure for robust image registration. IEEE Trans. on Signal Processing 51, 1211–1220 (2003)

    Article  MathSciNet  Google Scholar 

  6. Hero, A.O., Ma, B., Michel, O., Gorman, J.: Applications of entropic spanning graphs. IEEE Signal Processing Magazine 19, 85–95 (2002)

    Article  Google Scholar 

  7. Hibbard, L.S.: Region segmentation using information divergence measures. Medical Image Analysis 8, 233–244 (2004)

    Article  Google Scholar 

  8. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. on Medical Imaging 16, 187–198 (1998)

    Article  Google Scholar 

  9. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  10. Rényi, A.: On measures of entropy and information. In: Selected Papers of Alfréd Rényi, vol. 2, pp. 525–580. Akademiai Kiado, Budapest (1961)

    Google Scholar 

  11. Sabuncu, M.R., Ramadge, P.J.: Using spanning graphs for efficient image registration. IEEE Trans. on Image Processing 17, 788–797 (2008)

    Article  MathSciNet  Google Scholar 

  12. Takahashi, S., Ikeda, T., Shinagawa, Y., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Computer Graphics Forum 14, 181–192 (1995)

    Article  Google Scholar 

  13. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics 52, 479–487 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Viola, P., Wells, W.M.: Alignment by maximization of mutual information. International Journal of Computer Vision 24, 173–154 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohamed, W., Ben Hamza, A., Gharaibeh, K. (2010). Graph-Theoretic Image Alignment Using Topological Features. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics