[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Algorithm for Improving the Resolution of Cryo-EM Density Maps

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6044))

Abstract

Cryo-electron microscopy (cryo-EM) plays an increasingly prominent role in structure elucidation of macromolecular assemblies. Advances in experimental instrumentation and computational power have spawned numerous cryo-EM studies of large biomolecular complexes resulting in the reconstruction of three-dimensional density maps at intermediate and low resolution. In this resolution range, identification and interpretation of structural elements and modeling of biomolecular structure with atomic detail becomes problematic. In this paper, we present a novel algorithm that enhances the resolution of intermediate- and low-resolution density maps. Our underlying assumption is to model the low-resolution density map as a blurred and possibly noise-corrupted version of an unknown high-resolution map that we seek to recover by deconvolution. By exploiting the nonnegativity of both the high-resolution map and blur kernel we derive multiplicative updates reminiscent of those used in nonnegative matrix factorization. Our framework allows for easy incorporation of additional prior knowledge such as smoothness and sparseness, on both the sharpened density map and the blur kernel. A probabilistic formulation enables us to derive updates for the hyperparameters, therefore our approach has no parameter that needs adjustment. We apply the algorithm to simulated three-dimensional electron microscopic data. We show that our method provides better resolved density maps when compared with B-factor sharpening, especially in the presence of noise. Moreover, our method can use additional information provided by homologous structures, which helps to improve the resolution even further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Frank, J.: Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys Biomol. Struct. 31, 303–319 (2002)

    Article  Google Scholar 

  2. Orlova, E.V., Saibil, H.R.: Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs. Curr. Opin. Struct. Biol. 14, 584–590 (2004)

    Article  Google Scholar 

  3. Chiu, W., Baker, M.L., Jiang, W., Dougherty, M., Schmid, M.F.: Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13, 363–372 (2005)

    Article  Google Scholar 

  4. Brünger, A.T.: Low-resolution crystallography is coming of age. Structure 13, 171–172 (2005)

    Article  Google Scholar 

  5. DeLaBarre, B., Brunger, A.T.: Considerations for the refinement of low-resolution crystal structures. Acta Crystallographica D 62, 923–932 (2006)

    Google Scholar 

  6. Rosenthal, P.B., Henderson, R.: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003)

    Article  Google Scholar 

  7. Fernández, J.J., Luque, D., Castón, J.R., Carrascosa, J.L.: Sharpening high resolution information in single particle electron cryomicroscopy. J. Struct. Biol. 164, 170–175 (2008)

    Article  Google Scholar 

  8. Sha, F., Lin, Y., Saul, L.K., Lee, D.D.: Multiplicative Updates for Nonnegative Quadratic Programming. Neural Comput. 19(8), 2004–2031 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kundur, D., Hatzinakos, D.: Blind Image Deconvolution. IEEE Signal Processing Magazine 13, 43–64 (1996)

    Article  Google Scholar 

  10. Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in Astronomy: A Review. The Publications of the Astronomical Society of the Pacific 114, 1051–1069 (2002)

    Article  Google Scholar 

  11. Sarder, P., Nehorai, A.: Deconvolution methods for 3-d fluorescence microscopy images. IEEE Signal Processing Magazine 23(3), 32–45 (2006)

    Article  Google Scholar 

  12. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision & Pattern Recognition (2009)

    Google Scholar 

  13. Johnston, R.A., Connolly, T.J., Lane, R.G.: An improved method for deconvolving a positive image. Optics Communications 181, 267–278 (2000)

    Article  Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes: The art of scientific computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  15. Mackay, D.J.C.: Hyperparameters: Optimize, or integrate out? In: Maximum Entroy and Bayesian Methods, pp.43–59 (1996)

    Google Scholar 

  16. Molina, R., Mateos, J., Katsaggelos, A.K.: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Transactions on Image Processing 15, 3715–3727 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lin, Y., Lee, D.D.: Bayesian regularization and nonnegative deconvolution for time delay estimation. In: NIPS, pp. 809–816 (2005)

    Google Scholar 

  18. Jin, B., Zou, J.: Augmented Tikhonov regularization. Inverse Problems 25(2), 025001 (2009)

    Google Scholar 

  19. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Transactions on Graphics, SIGGRAPH (2008)

    Google Scholar 

  20. Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  Google Scholar 

  21. Grimes, J.M., Burroughs, J.N., Gouet, P., Diprose, J.M., Malby, R., Ziéntara, S., Mertens, P.P.C., Stuart, D.I.: The atomic structure of the bluetongue virus core. Nature 395, 470–478 (1998)

    Article  Google Scholar 

  22. Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the Information Gap: Computational Tools for Intermediate Resolution Structure Interpretation. Journal of Molecular Biology 308, 1033–1044 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirsch, M., Schölkopf, B., Habeck, M. (2010). A New Algorithm for Improving the Resolution of Cryo-EM Density Maps. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics