Abstract
The paper deals with the parallel computation of matrix factorization using graph partitioning-based domain decomposition. It is well-known that the partitioned graph may have both a small separator and well-balanced domains but sparse matrix decompositions on domains can be completely unbalanced.
In this paper we propose to enhance the iterative strategy for balancing the decompositions from [13] by graph-theoretical tools. We propose the whole framework for the graph repartitioning. In particular, new global and local reordering strategies for domains are discussed in more detail. We present both theoretical results for structured grids and experimental results for unstructured large-scale problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Catalyürek, U.V., Aykanat, C.: Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 20, 673–693 (1999)
Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, Supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 22:1–22:14 (2008)
Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)
Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no clothes? In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1999)
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49, 291–307 (1970)
Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. Benjamin-Cummings (1994)
Liu, J.W.H.: A tree model for sparse symmetric indefinite matrix factorization. SIAM J. Matrix Anal. Appl. 9, 26–39 (1988)
Liu, J.W.H.: The minimum degree ordering with constraints. SIAM J. Sci. Comput. 10, 1136–1145 (1989)
Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11, 134–172 (1990)
Liu, J.W.H., Ng, E.G., Peyton, B.W.: On finding supernodes for sparse matrix computations. SIAM J. Matrix Anal. Appl. 14, 242–252 (1993)
Pinar, A., Hendrickson, B.: Combinatorial Parallel and Scientific Computing. In: Heroux, M., Raghavan, P., Simon, H. (eds.) Parallel Processing for Scientific Computing, pp. 127–141. SIAM, Philadelphia (2006)
Pinar, A., Hendrickson, B.: Partitioning for complex objectives. In: Parallel and Distributed Processing Symposium, vol. 3, pp. 1232–1237 (2001)
Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing adaptive scientific simulations. In: Proceedings of the ACM/IEEE Symposium on Supercomputing, vol. 59. ACM, New York (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jurková, K., Tůma, M. (2010). Factorization-Based Graph Repartitionings. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_92
Download citation
DOI: https://doi.org/10.1007/978-3-642-12535-5_92
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12534-8
Online ISBN: 978-3-642-12535-5
eBook Packages: Computer ScienceComputer Science (R0)