[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Factorization-Based Graph Repartitionings

  • Conference paper
Large-Scale Scientific Computing (LSSC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5910))

Included in the following conference series:

  • 2161 Accesses

Abstract

The paper deals with the parallel computation of matrix factorization using graph partitioning-based domain decomposition. It is well-known that the partitioned graph may have both a small separator and well-balanced domains but sparse matrix decompositions on domains can be completely unbalanced.

In this paper we propose to enhance the iterative strategy for balancing the decompositions from [13] by graph-theoretical tools. We propose the whole framework for the graph repartitioning. In particular, new global and local reordering strategies for domains are discussed in more detail. We present both theoretical results for structured grids and experimental results for unstructured large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Catalyürek, U.V., Aykanat, C.: Hypergraph-partitioning based decomposition for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems 20, 673–693 (1999)

    Article  Google Scholar 

  2. Chen, Y., Davis, T.A., Hager, W.W., Rajamanickam, S.: Algorithm 887: CHOLMOD, Supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 22:1–22:14 (2008)

    Google Scholar 

  3. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  4. Hendrickson, B.: Graph partitioning and parallel solvers: Has the emperor no clothes? In: Ferreira, A., Rolim, J.D.P., Teng, S.-H. (eds.) IRREGULAR 1998. LNCS, vol. 1457, pp. 218–225. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49, 291–307 (1970)

    Google Scholar 

  7. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. Benjamin-Cummings (1994)

    Google Scholar 

  8. Liu, J.W.H.: A tree model for sparse symmetric indefinite matrix factorization. SIAM J. Matrix Anal. Appl. 9, 26–39 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, J.W.H.: The minimum degree ordering with constraints. SIAM J. Sci. Comput. 10, 1136–1145 (1989)

    Article  MATH  Google Scholar 

  10. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 11, 134–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu, J.W.H., Ng, E.G., Peyton, B.W.: On finding supernodes for sparse matrix computations. SIAM J. Matrix Anal. Appl. 14, 242–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pinar, A., Hendrickson, B.: Combinatorial Parallel and Scientific Computing. In: Heroux, M., Raghavan, P., Simon, H. (eds.) Parallel Processing for Scientific Computing, pp. 127–141. SIAM, Philadelphia (2006)

    Google Scholar 

  13. Pinar, A., Hendrickson, B.: Partitioning for complex objectives. In: Parallel and Distributed Processing Symposium, vol. 3, pp. 1232–1237 (2001)

    Google Scholar 

  14. Schloegel, K., Karypis, G., Kumar, V.: A unified algorithm for load-balancing adaptive scientific simulations. In: Proceedings of the ACM/IEEE Symposium on Supercomputing, vol. 59. ACM, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jurková, K., Tůma, M. (2010). Factorization-Based Graph Repartitionings. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2009. Lecture Notes in Computer Science, vol 5910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12535-5_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12535-5_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12534-8

  • Online ISBN: 978-3-642-12535-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics