[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interaction Promotes Collaboration and Learning: Video Analysis of Algorithm Visualization Use during Collaborative Learning

  • Conference paper
Web Information Systems and Technologies (WEBIST 2009)

Abstract

We report a study on collaborative learning with Algorithm Visualizations (AV). We have previously confirmed the hypothesis that students’ higher engagement has a positive effect on learning outcomes when they learn collaboratively. Thus, in this paper the analysis is targeted on students’ collaborative learning process in order to find phenomena that explain the learning improvements. In the video and audio analysis of the learning sessions, we have identified that the amount of collaboration and discussion increase when the level of engagement increases. Furthermore, the groups that used visualizations on higher level of engagement, discussed the learned topic on different levels of abstraction whereas groups that used visualizations on lower levels of engagement tended to concentrate more on only one aspect of the topic. Therefore, one of our conclusions is that the level of engagement indicates, not only the learning performance, but also the amount of on-topic discussions in collaboration. Furthermore, based on previous literature, we claim that the amount and quality of discussions explain the learning performance differences when students use visualizations in collaboration on different levels of engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 53.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A meta-study of algorithm visualization effectiveness. Journal of Visual Languages and Computing 13(3), 259–290 (2002)

    Article  Google Scholar 

  2. Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., Velázquez-Iturbide, J.Á.: Exploring the role of visualization and engagement in computer science education. In: Working Group Reports from ITiCSE on Innovation and Technology in Computer Science Education, pp. 131–152. ACM Press, New York (2002)

    Chapter  Google Scholar 

  3. Garrison, D.R.: A cognitive constructivist view of distance education: An analysis of teaching-learning assumptions. Distance Education 14(2), 199–211 (1993)

    Article  Google Scholar 

  4. Piaget, J.: The Development of Thought: Equilibration of Cognitive Structures. Viking, New York (1977)

    Google Scholar 

  5. Myller, N., Bednarik, R., Sutinen, E., Ben-Ari, M.: Extending the engagement taxonomy: Software visualization and collaborative learning. Trans. Comput. Educ. 9(1), 1–27 (2009)

    Article  Google Scholar 

  6. Palincsar, A.S.: Social constructivist perspectives on teaching and learning. Annual Review of Psychology 49, 345–375 (1998)

    Article  Google Scholar 

  7. McMahon, M.: Social constructivism and the world wide web – a paradigm for learning. In: Proceedings of the ASCILITE conference, Perth, Australia (1997)

    Google Scholar 

  8. Vygotsky, L.S.: Mind in society. Harvard University Press, Cambridge (1978)

    Google Scholar 

  9. Beck, L.L., Chizhik, A.W.: An experimental study of cooperative learning in CS1. In: SIGCSE 2008: Proceedings of the 39th SIGCSE technical symposium on Computer science education, pp. 205–209. ACM, New York (2008)

    Chapter  Google Scholar 

  10. Teague, D., Roe, P.: Collaborative learning: towards a solution for novice programmers. In: ACE 2008: Proceedings of the tenth conference on Australasian computing education, Darlinghurst, Australia, pp. 147–153. Australian Computer Society, Inc. (2008)

    Google Scholar 

  11. Valdivia, R., Nussbaum, M.: Face-to-face collaborative learning in computer science classes. International Journal of Engineering Education 23(3), 434–440 (2007)

    Google Scholar 

  12. Suthers, D.D., Hundhausen, C.D.: An experimental study of the effects of representational guidance on collaborative learning processes. Journal of the Learning Sciences 12(2), 183–219 (2003)

    Article  Google Scholar 

  13. Laakso, M.J., Myller, N., Korhonen, A.: Comparing learning performance of students using algorithm visualizations collaboratively on different engagement levels. Journal of Educational Technology & Society 12(2), 267–282 (2009)

    Google Scholar 

  14. Myller, N., Laakso, M., Korhonen, A.: Analyzing engagement taxonomy in collaborative algorithm visualization. In: Hughes, J., Peiris, D.R., Tymann, P.T. (eds.) ITiCSE 2007: Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, pp. 251–255. ACM Press, New York (2007)

    Chapter  Google Scholar 

  15. Moore, M.G.: Editorial: Three types of interaction. The American Journal of Distance Education 3, 16 (1989)

    Google Scholar 

  16. Grissom, S., McNally, M., Naps, T.L.: Algorithm visualization in CS education: Comparing levels of student engagement. In: Proceedings of the First ACM Symposium on Software Visualization, pp. 87–94. ACM Press, New York (2003)

    Chapter  Google Scholar 

  17. Naps, T.L., Grissom, S.: The effective use of quicksort visualizations in the classroom. Journal of Computing Sciences in Colleges 18(1), 88–96 (2002)

    Google Scholar 

  18. Hundhausen, C.D.: Integrating algorithm visualization technology into an undergraduate algorithms course: Ethnographic studies of a social constructivist approach. Computers & Education 39(3), 237–260 (2002)

    Article  Google Scholar 

  19. Hundhausen, C.D., Brown, J.L.: Designing, visualizing, and discussing algorithms within a CS 1 studio experience: An empirical study. Computers & Education 50(1), 301–326 (2008)

    Article  Google Scholar 

  20. Ben-Bassat Levy, R., Ben-Ari, M., Uronen, P.A.: The Jeliot 2000 program animation system. Computers & Education 40(1), 15–21 (2003)

    Article  Google Scholar 

  21. Laakso, M.J., Salakoski, T., Korhonen, A.: The feasibility of automatic assessment and feedback. In: Proceedings of Cognition and Exploratory Learning in Digital Age (CELDA 2005), Porto, Portugal, December 2005, pp. 113–122 (2005)

    Google Scholar 

  22. Evans, C., Gibbons, N.J.: The interactivity effect in multimedia learning. Computers & Education 49(4), 1147–1160 (2007)

    Article  Google Scholar 

  23. Hundhausen, C.D.: Using end-user visualization environments to mediate conversations: A ‘Communicative Dimensions’ framework. Journal of Visual Languages and Computing 16(3), 153–185 (2005)

    Article  Google Scholar 

  24. Korhonen, A., Malmi, L., Silvasti, P.: TRAKLA2: a framework for automatically assessed visual algorithm simulation exercises. In: Proceedings of Koli Calling – Third Annual Baltic Conference on Computer Science Education, Joensuu, Finland, pp. 48–56 (2003)

    Google Scholar 

  25. Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., Silvasti, P.: Visual algorithm simulation exercise system with automatic assessment: TRAKLA2. Informatics in Education 3(2), 267–288 (2004)

    Google Scholar 

  26. Gall, M.D., Gall, J.P., Borg, W.R.: Educational Research: An Introduction, 8th edn. Allyn & Bacon, Boston (2006)

    Google Scholar 

  27. Teasley, S.: Talking about reasoning: How important is the peer in peer collaboration. In: Resnick, L., Säljö, R., Pontecorvo, C., Burge, B. (eds.) Discourse, Tools and Reasoning: Essays on Situated Cognition, pp. 361–384. Springer, New York (1997)

    Google Scholar 

  28. Berkowitz, M.W., Gibbs, J.C.: Measuring the development of features in moral discussion. Merill-Palmer Quarterly 29, 399–410 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laakso, MJ., Myller, N., Korhonen, A. (2010). Interaction Promotes Collaboration and Learning: Video Analysis of Algorithm Visualization Use during Collaborative Learning. In: Cordeiro, J., Filipe, J. (eds) Web Information Systems and Technologies. WEBIST 2009. Lecture Notes in Business Information Processing, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12436-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12436-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12435-8

  • Online ISBN: 978-3-642-12436-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics