[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Self-adaptive Coordination for Robot Teams Accomplishing Critical Activities

  • Conference paper
Advances in Practical Applications of Agents and Multiagent Systems

Abstract

This paper presents a self-adaptive cooperation model for autonomous mobile devices, to achieve collaborative goals in crisis management scenarios. The model, which is based on the AMAS theory, allows dynamic team formation, task allocation and reconfiguration. The global behaviour emerges from interactions among individual agents. Task responsibility allocation is done by individual estimations of the degree of difficulty and priority to achieve the task. Then each peer exchanges its evaluation records with the others in order to find out the best suited peer to take the responsibility. Research work has been done in the framework of the ROSACE project. The experimental setting based on forest fire crisis management, and a working example are also described in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Capera, D., Gleizes, M.-P., Glize, P.: Mechanism Type Synthesis based on Self-Assembling Agents. Journal of Applied Artificial Intelligence 18(9-10), 921–936 (2004)

    Article  Google Scholar 

  • Clair, G., Kaddoum, E., Gleizes, M.-P., Picard, G.: Self-Regulation in Self-Organising Multi-Agent Systems for Adaptive and Intelligent Manufacturing Control. In: IEEE Int. Conf. on Self-Adaptive and Self-Organizing Systems. IEEE CS Press, Los Alamitos (2008)

    Google Scholar 

  • Garijo, F., Bravo, S., Gonzalez, J., Bobadilla, E.: BOGAR LN: An agent based component framework for developing multi-modal services using natural language. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 207–220. Springer, Heidelberg (2004)

    Google Scholar 

  • Georgé, J.-P., Peyruqueou, S., Régis, C., Glize, P.: Experiencing Self-Adaptive MAS for Real-Time Decision Support Systems. In: Int. Conf. on Practical Applications of Agents and Multiagent Systems (PAAMS 2009), pp. 302–309. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Gleizes, M.-P., Camps, V., Georgé, J.-P., Capera, D.: Engineering Systems which Generate Emergent Functionalities. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 58–75. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  • Hassas, S., Castelfranchi, C., Di Marzo Serugendo, G.A.K.: Self-Organising Mechanisms from Social and Business/Economics Approaches. Informatica 30(1) (2006)

    Google Scholar 

  • Quillinan, T.B., Brazier, F., Aldewereld, H., Dignum, F., Dignum, V., Penserini, L., Wijngaards, N.: Developing Agent-based Organizational Models for Crisis Management. In: Proc. of the Industry Track of the 8th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 2009), Budapest, Hungary (2009)

    Google Scholar 

  • Sellami, Z., Gleizes, M.-P., Aussenac-Gilles, N., Rougemaille, S.: Dynamic ontology co-construction based on adaptive multi-agent technology. In: Int. Conf. on Knowledge Engineering and Ontology Development (KEOD 2009). Springer, Heidelberg (2009)

    Google Scholar 

  • Tate, A.: The Helpful Environment: Geographically Dispersed Intelligent Agents That Collaborate. IEEE Intelligent System 21(3) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgé, JP., Gleizes, MP., Garijo, F.J., Noël, V., Arcangeli, JP. (2010). Self-adaptive Coordination for Robot Teams Accomplishing Critical Activities. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds) Advances in Practical Applications of Agents and Multiagent Systems. Advances in Intelligent and Soft Computing, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12384-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12384-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12383-2

  • Online ISBN: 978-3-642-12384-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics