Abstract
A growing number of companies and public institutions use mobility data in their day-to-day business. One type of usage is the analysis of spatio-temporal interactions between mobile entities and geographic locations. In practice the employed measures depend on application demands and use context-specific terminology. Thus, a patchwork of measures has evolved which is not suitable for methodological research and interdisciplinary exchange of ideas. The measures lack a systematic formalization and a uniform terminology. In this paper we therefore systematically define measures for entity-location interactions which we name visit potential. We provide a common vocabulary that can be applied for an entire class of mobility applications. We present two real-world scenarios which apply entity-location interaction measures and demonstrate how the employed measures can be precisely defined in terms of visit potential.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
ag.ma (2010) Arbeitsgemeinschaft Media-Analyse e.V. (German working group for media analysis) http://www.agma-mmc.de, last date accessed Jan 2010.
Alvares LO, Bogorny V, Kuijpers B, de Macedo JA, Moelans B, Vaisman A
(2007) A model for enriching trajectories with semantic geographical information. In Proc. of the 15th Annual ACM international Symposium on Advances in Geographic information Systems (GIS'07). ACM, pp 1-8.
BirdTrack (2010) http://www.birdtrack.net, last date accessed Jan 2010.
FAW (2010) Fachverband Außenwerbung e.V. (German special interest group forc outdoor advertising) http://www.faw-ev.de, last date accessed Jan 2010.
Giannotti F, Nanni M, Pedreschi D, Pinelli F (2007) Trajectory Pattern Mining. In: Proc. of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07). ACM, pp 330-339.
Gudmundsson J, Kreveld M, Speckmann B (2007) Efficient detection of patterns in 2D trajectories of moving points. In: Geoinformatica 11(2):195-215.
Hwang SY, Liu YH, Chiu JK, Lim EP (2005) Mining mobile group patters: a trajectory-based approach. In: Proc. of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’05). Springer, pp 713-718.
Kleinberg JM (1999) Hubs, authorities, and communities. ACM Computing Surveys 31(5). ACM.
Laube P, Imfeld S (2002) Analyzing relative Motion within groups of trackable moving point objects. In: Proc. of the 2nd International Conference on Geographic Information Science (GIScience’02). Springer, pp 132–144.
Marchal P, Yuan S, Flavigny PO (2008) Person-based GPS surveys in France: „Lille Experiment“ by ISL, and GPS Subset in the French National Travel Survey (ENTD 2007-2008). COST 355 project meeting. http://cost355.inrets.fr/IMG/ppt/WG3-Torino-051007-Marchal-Yuan-Flavigny-GPS-v2du05100700.ppt, last date accessed Jan 2010.
May M, Körner C, Hecker D, Pasquier M, Hofmann U, Mende F (2009) Handling Missing Values in GPS Surveys Using Survival Analysis: A GPS Case Study of Outdoor Advertising. In: Proc. of the 3rd ACM SIGKDD Workshop on Data Mining and Audience Intelligence for Advertising (ADKDD’09). ACM, pp 78-84.
May M, Hecker D, Körner C, Scheider S, Schulz D (2008a) A vector-geometry based spatial kNN-algorithm for traffic frequency predictions. In: Proc. of the 2008 IEEE International Conference on Data Mining Workshops (ICDMW '08). IEEE Computer Society, pp 442-447.
May M, Scheider S, Rösler R, Schulz D, Hecker D (2008b) Pedestrian flow prediction in extensive road networks using biased observational data. In: Proc. of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS '08). ACM, pp 1-4.
Nanni M, Pedreschi D (2006) Time-focused density-based clustering of trajectories of moving objects. In: Journal of Intelligent Information Systems (JIIS), 27(3):267-289, Special Issue on Mining Spatio-Temporal Data.
Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. In: Proc. of the 2008 ACM Symposium on Applied Computing (SAC'08). ACM, pp 863-868.
Pasquier M, Hofmann U, Mende FH, May M, Hecker D, Körner C (2008) Modelling and prospects of the audience measurement for outdoor advertising based on data collection using GPS devices (electronic passive measurement system). In: Proc. of the 8th International Conference on Survey Methods in Transport.
Pelekis N, Kopanakis I, Ntoutsi I, Marketos G, Andrienko G, Theodoridis Y (2007) Similarity search in trajectory databases, In: Proc. of the 14th IEEE In ternational Symposium on Temporal Representation and Reasoning (TIME 2007). IEEE Computer Society Press, pp 129-140.
Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008) Visually driven analysis of movement data by progressive clustering. In: Information Visualization 7(3):225-239.
Sissors JZ, Baron RB (2002) Advertising Media Planning. McGraw-Hill, chp 4-5 SPR+ (2010) Swiss Poster Research Plus AG. http://www.spr-plus.ch, last date accessed Jan 2010.
Yang Y, Hu M (2006) TrajPattern: mining sequential patterns from imprecise trajectories of mobile objects. In: Proc. of 10th International Conference on Extending Database Technology. Springer, pp 664-681.
Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining Interesting locations and travel sequences from GPS Trajectories. In: Proc. of the 18th International World Wide Web Conference (WWW’09). ACM, pp 791-800.
Acknowledgement
The authors would like to thank the Swiss Poster Research Plus AG (SPR+), the German Arbeitsgemeinschaft Media-Analyse e.V. (ag.ma) and the German Fachverband Außenwerbung e.V. (FAW) as well as the British Trust for Ornithology (BTO), the Royal Society for the Protection of Birds (RSPB) and BirdWatch Ireland for providing comprehensive materials about the application domains.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Körner, C., Hecker, D., May, M., Wrobel, S. (2010). Visit Potential: A Common Vocabulary for the Analysis of Entity-Location Interactions in Mobility Applications. In: Painho, M., Santos, M., Pundt, H. (eds) Geospatial Thinking. Lecture Notes in Geoinformation and Cartography, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12326-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-12326-9_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12325-2
Online ISBN: 978-3-642-12326-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)