[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimal Succinctness for Range Minimum Queries

  • Conference paper
LATIN 2010: Theoretical Informatics (LATIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6034))

Included in the following conference series:

Abstract

For a static array A of n totally ordered objects, a range minimum query asks for the position of the minimum between two specified array indices. We show how to preprocess A into a scheme of size 2n + o(n) bits that allows to answer range minimum queries on A in constant time. This space is asymptotically optimal in the important setting where access to A is not permitted after the preprocessing step. Our scheme can be computed in linear time, using only n + o(n) additional bits for construction. We also improve on LCA-computation in BPS- or DFUDS-encoded trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing Systems 41(4), 589–607 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

    Article  MATH  Google Scholar 

  3. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete Algorithms 5(1), 12–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved algorithms for the range next value problem and applications. In: Proc. STACS, IBFI Schloss Dagstuhl, pp. 205–216 (2008)

    Google Scholar 

  5. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J. Comput. 22(2), 221–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: A survey and a new distributed algorithm. In: Proc. SPAA, pp. 258–264 (2002)

    Google Scholar 

  8. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered trees. In: Proc. SODA, pp. 575–584. ACM/SIAM (2007)

    Google Scholar 

  12. Sadakane, K., Navarro, G.: Fully-functional succinct trees. Accepted for SODA 2010. See also CoRR, abs/0905.0768v1 (2009)

    Google Scholar 

  13. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of sequences and full-text indexes. ACM TALG 3(2), Article No. 20 (2007)

    Google Scholar 

  14. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J. Algorithms 48(2), 294–313 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Fischer, J., Heun, V., Stühler, H.M.: Practical entropy bounded schemes for O(1)-range minimum queries. In: Proc. DCC, pp. 272–281. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  17. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J. Comput. 22(5), 935–948 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vuillemin, J.: A unifying look at data structures. Comm. ACM 23(4), 229–239 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. FOCS, pp. 549–554. IEEE Computer Society Press, Los Alamitos (1989)

    Google Scholar 

  20. Bialynicka-Birula, I., Grossi, R.: Amortized rigidness in dynamic Cartesian Trees. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 80–91. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput. Sci. 387(3), 348–359 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc. SODA, pp. 657–666. ACM/SIAM (2002)

    Google Scholar 

  23. Fischer, J.: Optimal succinctness for range minimum queries. CoRR, abs/0812.2775 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, J. (2010). Optimal Succinctness for Range Minimum Queries. In: López-Ortiz, A. (eds) LATIN 2010: Theoretical Informatics. LATIN 2010. Lecture Notes in Computer Science, vol 6034. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12200-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12200-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12199-9

  • Online ISBN: 978-3-642-12200-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics