Abstract
Nowadays, spatial analysis led on complex phenomenon implies the usage of data available on heterogeneous territorial meshes, that is to say misaligned meshes. Then, combine these data requires the transfer of each dataset into a common spatial support that can be exploited. This is known as the Change Of Support Problem (COSP). However, it appears that transfer methods are numerous, and they are often linked with a regression model, and other parameters whose selection and tuning may not be straight forward for a non-expert user. Furthermore, the process is also very dependent from both the nature of the data to be transferred and their quality. This paper first proposes a brief overview of some available transfer methods, giving the premises for the characterization of each method. A use case illustrates a transfer operation, and reveals its main difficulties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arbia, G.: Statistical Effect of Data Transformations: A Proposed General Framework. In: Goodchild, M., Gopal, S. (eds.) The Accuracy of Spatial Data Bases, pp. 249–259. Taylor and Francis, London (1989)
Arnaud, M., Emery, X.: Estimation et interpolation spatiale : méthodes déterministes et méthodes géostatiques, Paris, Hermès (2000) (in French)
Badran, F., Daigremont, P., Thiria, S.: Régression par carte topologique. In: Thiria, S., et al. (eds.) Statistiques et méthodes neuronales, pp. 207–222 (1997) (in French)
Bracken, I., Martin, D.: The generation of spatial population distributions from census centroid data. Environment and Planning A 21, 537–543 (1989)
CERTU, Méthodes d’estimations de population, Lyon (2005) (in French)
Cressie, N.: Statistics for spatial data. John Wiley and Sons, New-York (1991)
Droesbeke, J.-J., Lejeune, M., Saporta, G.: Analyse statistique des données spatiales, Paris, Technip (2006) (in French)
Dubrule, O.: Two methods with differents objectives : splines and kriging. Mathematical geology 15, 245–255 (1983)
ESPON 3.4.3, The modifiable areas unit problem, Luxembourg, Final report (2006)
EUROSTAT European Commission Statistical Office – EUROSTAT, GIS Application Development, Final Report (1999)
Fisher, P.F., Langford, M.: Modelling the errors in areal interpolation between zonal systems by Monte Carlo simulation. Environment and Planning A 27, 211–224 (1995)
Flowerdew, R., Green, M.: Statistical methods for inference between incompatible zonal systems. In: Goodchild, M., Gopal, S. (eds.) The accuracy of spatial data bases, pp. 239–247. Taylor and Francis, London (1989)
Flowerdew, R., Green, M.: Developments in areal interpolation methods and GIS. The Annals of Regional Science 26, 76–95 (1992)
Fotheringham, A.S., Brunsdon, C., Charlton, M.: Quantitative Geography, pp. 59–60. Sage, London (2000)
Gomez, O., Paramo, F.: The Land and Ecosystem Accounting (LEAC) methodology guidebook, Internal report (2005), http://dataservice.eea.europa.eu/download.asp?id=15490
Goodchild, M.F., Anselin, L., Diechmann, U.: A general framework for the areal interpolation of socio-economic data. Environment and Planning A, 383–397 (1993)
Gotway, C., Young, L.: Combining incompatible spatial data. Journal of the American Statistical Association 97(458), 632–648 (2002)
Grasland, C.: A la recherche d’un cadre théorique et méthodologique pour l’étude des maillages territoriaux. Entretiens Jacques Cartier, Les découpages du territoire, Lyon (décembre 2007) (in French)
Langford, M., Unwin, D.J.: Generating and mapping population density surface within a GIS. The Cartographic Journal 31, 21–26 (1992)
Marceau, D.: The scale issue in social and natural sciences. Canadian Journal of Remote Sens 25(4), 347–356 (1999)
Markoff, J., Shapiro, G.: The Linkage of Data Describing Overlapping Geographical Units. Historical Methods Newsletter 7, 34–46 (1973)
Matheron, G.: Principles of geostatistics. Economy geology 58, 1246–1266 (1963)
Miller, H.J.: Geographic representation in spatial analysis. Journal of Geographical Systems 2(1), 55–60 (2000)
Nordhaus, W.D.: Alternative approaches to spatial rescaling. Yale University, New Haven (2002)
Openshaw, S., Taylor, P.: A Million or so Correlation Coefficients. In: Wrigley, N. (ed.) Statistical Methods in the Spatial Sciences, pp. 127–144. Pion, London (1979)
Openshaw, S.: Building an automated modelling system to explore a universe of spatial interaction models. Geographical Analysis 20, 31–46 (1988)
Plumejeaud, C., Vincent, J.-M., Grasland, C., Bimonte, S., Mathian, H., Guelton, S., Boulier, J., Gensel, J.: HyperSmooth, a system for Interactive Spatial Analysis via Potential Maps. In: Bertolotto, M., Ray, C., Li, X. (eds.) W2GIS 2008. LNCS, vol. 5373, pp. 4–16. Springer, Heidelberg (2008)
Rase, W.D.: Volume-preserving interpolation of a smooth surface from polygon-related data. Journal of Geographical Systems 3, 199–213 (2001)
Raskin, R.G.: Spatial Analysis on a Sphere: A Review. National Center for Geographic Information and Analysis, Technical Report (1994)
Reibel, M., Agrawal, A.: Areal Interpolation of Population Counts Using Pre-classified Land Cover Data. Population Research and Policy Review, 619–633 (2007)
Rigaux, P., Scholl, M.: Multi-scale partitions: application to spatial and statistical databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 170–183. Springer, Heidelberg (1995)
Schmit, C., Rounsevell, M.D.A., La Jeunesse, I.: The limitations of spatial land use data in environmental analysis. Environmental Science & Policy 9(2), 174–188 (2006)
Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proc. 23rd Nat. Conf. ACM, pp. 517–523. Brandon/Systems Press Inc., Princeton (1968)
Tobler, W.A.: Smooth pycnopylactic interpolation for geographical regions. Journal of the American Statistical Association 74, 519–530 (1979)
Zaninetti, J.M.: Statistique spatiale, méthodes et applications géomatiques, Paris, Hermès (2005) (in French)
Zhang, Z., Griffith, D.: Developing user-friendly spatial statistical analysis modules for GIS: an example using ArcView. Computer, Environment and Urban Systems (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Plumejeaud, C., Prud’homme, J., Davoine, PA., Gensel, J. (2010). Transferring Indicators into Different Partitions of Geographic Space. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12156-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-12156-2_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12155-5
Online ISBN: 978-3-642-12156-2
eBook Packages: Computer ScienceComputer Science (R0)