[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Transferring Indicators into Different Partitions of Geographic Space

  • Conference paper
Computational Science and Its Applications – ICCSA 2010 (ICCSA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6016))

Included in the following conference series:

  • 2031 Accesses

Abstract

Nowadays, spatial analysis led on complex phenomenon implies the usage of data available on heterogeneous territorial meshes, that is to say misaligned meshes. Then, combine these data requires the transfer of each dataset into a common spatial support that can be exploited. This is known as the Change Of Support Problem (COSP). However, it appears that transfer methods are numerous, and they are often linked with a regression model, and other parameters whose selection and tuning may not be straight forward for a non-expert user. Furthermore, the process is also very dependent from both the nature of the data to be transferred and their quality. This paper first proposes a brief overview of some available transfer methods, giving the premises for the characterization of each method. A use case illustrates a transfer operation, and reveals its main difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arbia, G.: Statistical Effect of Data Transformations: A Proposed General Framework. In: Goodchild, M., Gopal, S. (eds.) The Accuracy of Spatial Data Bases, pp. 249–259. Taylor and Francis, London (1989)

    Google Scholar 

  2. Arnaud, M., Emery, X.: Estimation et interpolation spatiale : méthodes déterministes et méthodes géostatiques, Paris, Hermès (2000) (in French)

    Google Scholar 

  3. Badran, F., Daigremont, P., Thiria, S.: Régression par carte topologique. In: Thiria, S., et al. (eds.) Statistiques et méthodes neuronales, pp. 207–222 (1997) (in French)

    Google Scholar 

  4. Bracken, I., Martin, D.: The generation of spatial population distributions from census centroid data. Environment and Planning A 21, 537–543 (1989)

    Article  Google Scholar 

  5. CERTU, Méthodes d’estimations de population, Lyon (2005) (in French)

    Google Scholar 

  6. Cressie, N.: Statistics for spatial data. John Wiley and Sons, New-York (1991)

    MATH  Google Scholar 

  7. Droesbeke, J.-J., Lejeune, M., Saporta, G.: Analyse statistique des données spatiales, Paris, Technip (2006) (in French)

    Google Scholar 

  8. Dubrule, O.: Two methods with differents objectives : splines and kriging. Mathematical geology 15, 245–255 (1983)

    Article  MathSciNet  Google Scholar 

  9. ESPON 3.4.3, The modifiable areas unit problem, Luxembourg, Final report (2006)

    Google Scholar 

  10. EUROSTAT European Commission Statistical Office – EUROSTAT, GIS Application Development, Final Report (1999)

    Google Scholar 

  11. Fisher, P.F., Langford, M.: Modelling the errors in areal interpolation between zonal systems by Monte Carlo simulation. Environment and Planning A 27, 211–224 (1995)

    Article  Google Scholar 

  12. Flowerdew, R., Green, M.: Statistical methods for inference between incompatible zonal systems. In: Goodchild, M., Gopal, S. (eds.) The accuracy of spatial data bases, pp. 239–247. Taylor and Francis, London (1989)

    Google Scholar 

  13. Flowerdew, R., Green, M.: Developments in areal interpolation methods and GIS. The Annals of Regional Science 26, 76–95 (1992)

    Article  Google Scholar 

  14. Fotheringham, A.S., Brunsdon, C., Charlton, M.: Quantitative Geography, pp. 59–60. Sage, London (2000)

    Google Scholar 

  15. Gomez, O., Paramo, F.: The Land and Ecosystem Accounting (LEAC) methodology guidebook, Internal report (2005), http://dataservice.eea.europa.eu/download.asp?id=15490

  16. Goodchild, M.F., Anselin, L., Diechmann, U.: A general framework for the areal interpolation of socio-economic data. Environment and Planning A, 383–397 (1993)

    Google Scholar 

  17. Gotway, C., Young, L.: Combining incompatible spatial data. Journal of the American Statistical Association 97(458), 632–648 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grasland, C.: A la recherche d’un cadre théorique et méthodologique pour l’étude des maillages territoriaux. Entretiens Jacques Cartier, Les découpages du territoire, Lyon (décembre 2007) (in French)

    Google Scholar 

  19. Langford, M., Unwin, D.J.: Generating and mapping population density surface within a GIS. The Cartographic Journal 31, 21–26 (1992)

    Google Scholar 

  20. Marceau, D.: The scale issue in social and natural sciences. Canadian Journal of Remote Sens 25(4), 347–356 (1999)

    MathSciNet  Google Scholar 

  21. Markoff, J., Shapiro, G.: The Linkage of Data Describing Overlapping Geographical Units. Historical Methods Newsletter 7, 34–46 (1973)

    Google Scholar 

  22. Matheron, G.: Principles of geostatistics. Economy geology 58, 1246–1266 (1963)

    Article  Google Scholar 

  23. Miller, H.J.: Geographic representation in spatial analysis. Journal of Geographical Systems 2(1), 55–60 (2000)

    Google Scholar 

  24. Nordhaus, W.D.: Alternative approaches to spatial rescaling. Yale University, New Haven (2002)

    Google Scholar 

  25. Openshaw, S., Taylor, P.: A Million or so Correlation Coefficients. In: Wrigley, N. (ed.) Statistical Methods in the Spatial Sciences, pp. 127–144. Pion, London (1979)

    Google Scholar 

  26. Openshaw, S.: Building an automated modelling system to explore a universe of spatial interaction models. Geographical Analysis 20, 31–46 (1988)

    Google Scholar 

  27. Plumejeaud, C., Vincent, J.-M., Grasland, C., Bimonte, S., Mathian, H., Guelton, S., Boulier, J., Gensel, J.: HyperSmooth, a system for Interactive Spatial Analysis via Potential Maps. In: Bertolotto, M., Ray, C., Li, X. (eds.) W2GIS 2008. LNCS, vol. 5373, pp. 4–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Rase, W.D.: Volume-preserving interpolation of a smooth surface from polygon-related data. Journal of Geographical Systems 3, 199–213 (2001)

    Article  Google Scholar 

  29. Raskin, R.G.: Spatial Analysis on a Sphere: A Review. National Center for Geographic Information and Analysis, Technical Report (1994)

    Google Scholar 

  30. Reibel, M., Agrawal, A.: Areal Interpolation of Population Counts Using Pre-classified Land Cover Data. Population Research and Policy Review, 619–633 (2007)

    Google Scholar 

  31. Rigaux, P., Scholl, M.: Multi-scale partitions: application to spatial and statistical databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 170–183. Springer, Heidelberg (1995)

    Google Scholar 

  32. Schmit, C., Rounsevell, M.D.A., La Jeunesse, I.: The limitations of spatial land use data in environmental analysis. Environmental Science & Policy 9(2), 174–188 (2006)

    Article  Google Scholar 

  33. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proc. 23rd Nat. Conf. ACM, pp. 517–523. Brandon/Systems Press Inc., Princeton (1968)

    Chapter  Google Scholar 

  34. Tobler, W.A.: Smooth pycnopylactic interpolation for geographical regions. Journal of the American Statistical Association 74, 519–530 (1979)

    Article  MathSciNet  Google Scholar 

  35. Zaninetti, J.M.: Statistique spatiale, méthodes et applications géomatiques, Paris, Hermès (2005) (in French)

    Google Scholar 

  36. Zhang, Z., Griffith, D.: Developing user-friendly spatial statistical analysis modules for GIS: an example using ArcView. Computer, Environment and Urban Systems (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plumejeaud, C., Prud’homme, J., Davoine, PA., Gensel, J. (2010). Transferring Indicators into Different Partitions of Geographic Space. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12156-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12156-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12155-5

  • Online ISBN: 978-3-642-12156-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics