Abstract
This paper presents a new evolutionary computing strategy which uses the linear programming duality information to help the search for optimum solutions of hard optimization problems. The algorithm is restarted several times when it is stuck into a local optima. At each restart, the appropriate dual space is constructed. A new population of primal individuals is generated using the information from dual solutions and is considered for next iterations. The pursued goal was not to find the best algorithm for solving winner determination problem, but to prove the method’s viability using the problem as a case study. Experiments on realistic instances were performed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Boston (1989)
Yang, S.: PDGA: the Primal-Dual Genetic Algorithm. In: Abraham, A., Koppen, M., Franke, K. (eds.) Design and Application of Hybrid Intelligent Systems, pp. 214–223. IOS Press, Amsterdam (2003)
Raidl, G., Puchinger, J.: Combining (Integer) Linear Programming Techniques and Metaheuristics for Combinatorial Optimization. In: Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics, An Emerging Approach to Optimization, Studies in Computational Intelligence, vol.114, pp. 31–62 (2008)
Pfeiffer, J., Rothlauf, F.: Analysis of Greedy Heuristics and Weight-Coded EAs for Multidimensional Knapsack Problems and Multi-Unit Combinatorial Auctions. In: Proceedings of the 9th annual Conference on Genetic and Evolutionary Computation, p.1529 (2007)
Hansen, P., Brimberg, J., Mladenović, N., Urosević, D.: Primal-dual variable neighbourhood search for the simple plant location problem. INFORMS Journal on Computing 19(4), 552–564 (2007)
Dantzig, G.B., Ford, L.R., Fulkerson, D.R.: A primal-dual algorithm for linear programs. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 171–181. Princeton University Press, Princeton (1956)
Williamson, D.P.: The Primal-Dual Method for Approximation Algorithms. Mathematical Programming, Series B 91(3), 447–478 (2002)
Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of combinatorial auctions: optimal and approximate approaches. In: Sixteenth international joint conference on artificial intelligence, pp. 48–53 (1999)
Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for combinatorial auctions. In: Proceedings of the international joint conferences on artificial intelligence, pp. 1102–1108 (2001)
Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Proceedings of ACM conference on electronic commerce EC, pp. 1–12 (2000)
Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: 4th Internationl Conference on Multiagent Systems (2000)
Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search. In: Proceedings of the 17th national conference on artificial intelligence, pp. 22–29 (2000)
Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Computers and Operations Research 33(8), 2179–2188 (2006)
Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal winner determination problem. Soft Computing 13(8-9), 905–917 (2009)
Vohra, R., de Vries, S.: Combinatorial auctions: A survey. INFORMS Journals of Computing 15(3), 284–309 (2003)
Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combinatorial auctions. Management Science 44(8), 1131–1147 (1998)
Gonen, R., Lehmann, D.: Linear Programming helps solving large multi-unit combinatorial auctions. In: Proceedings of the Electronic Market Design Workshop (2001)
DeMartini, C., Kwasnica, A.M., Ledyard, O., Porter, D.: A New and Improved Design for Multi-Object Iterative Auctions. Management Science 51(3), 419–434 (2005)
Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional knapsack problems. In: Proceedings of the 2000 ACM symposium on Applied computing, vol. (1), pp. 408–414 (2000)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (1991)
Krysta, P.: Greedy Approximation via Duality for Packing, Combinatorial Auctions and Routing. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 615–627. Springer, Heidelberg (2005)
Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a Universal Test Suite for Combinatorial Auction Algorithms. In: Proceedings of the 2nd ACM conference on Electronic commerce, pp. 66–76 (2000)
Berkelaar, M.: lp_solve - version 5.5. Eindhoven University of Technology, http://sourceforge.net/projects/lpsolve/
Zurel, E., Nisan, N.: An Efficient Approximate Allocation Algorithm for Combinatorial Auctions. In: Proceedings of the 3rd ACM conference on Electronic commerce, pp. 125–136 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raschip, M., Croitoru, C. (2010). A New Primal-Dual Genetic Algorithm: Case Study for the Winner Determination Problem. In: Cowling, P., Merz, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2010. Lecture Notes in Computer Science, vol 6022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12139-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-12139-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12138-8
Online ISBN: 978-3-642-12139-5
eBook Packages: Computer ScienceComputer Science (R0)