[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fuzzy and Semi-hard c-Means Clustering with Application to Classifier Design

  • Chapter
Integrated Uncertainty Management and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 68))

  • 968 Accesses

Abstract

From the objective function of a generalized entropy-based fuzzy c-means (FCM) clustering, an algorithm was derived, which is a counterpart of Gaussian mixture models clustering. A drawback of the iterative clustering method is the slow convergence of the algorithm. Miyamoto et al. derived a hard clustering algorithm by defuzzifying the FCM clustering in which covariance matrices were introduced as decision variables. Taking into account this method, for quick and stable convergence of FCM type clustering, we propose the semi-hard clustering approach. The clustering result is used for a classifier and the free parameters of the membership function of fuzzy clusters are selected by particle swarm optimization (PSO). A high classification performance is achieved on a vehicle detection problem for outdoor parking lots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  3. Krishnapuram, R., Keller, J.: A Possibilistic Approach to Clustering. IEEE Transactions on Fuzzy Systems 1, 98–110 (1993)

    Article  Google Scholar 

  4. Gustafson, E.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: IEEE CDC, San Diego, California, pp. 761–766 (1979)

    Google Scholar 

  5. Krishnapuram, R., Kim, J.: A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms. IEEE Transactions on Fuzzy Systems 7(4), 453–461 (1999)

    Google Scholar 

  6. Ichihashi, H., Honda, K., Hattori, T.: Regularized Discriminant in the Setting of Fuzzy c-Means Classifier. In: Proc. of the IEEE World Congress on Computational Intelligence, Vancouver, Canada (2006)

    Google Scholar 

  7. Ichihashi, H., Honda, K., Notsu, A., Ohta, K.: Fuzzy c-means classifier with particle swarm optimization. In: Proc. of the IEEE International Conference on Fuzzy System, World Congress on Computational Intelligence, Hong Kong, China, pp. 207–215 (2006)

    Google Scholar 

  8. Miyamoto, S., Ichihashi, H., Honda, K.: Algorithms for Fuzzy Clustering, Methods in c-Means Clustering with Applications. Springer, Berlin (2008)

    Google Scholar 

  9. Liu, Z.Q., Miyamoto, S. (eds.): Softcomputing and Human-Centered Machines. Springer, Heidelberg (2000)

    Google Scholar 

  10. Miyamoto, S., Yasukochi, T., Inokuchi, R.: A Family of Fuzzy and Defuzzified c-Means Algorithms. In: Proc. of the International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, pp. 170–176 (2005)

    Google Scholar 

  11. Ichihashi, H., Miyagishi, K., Honda, K.: Fuzzy c-Means Clustering with Regularization by K-L Information. In: Proc. of 10th IEEE International Conference on Fuzzy Systems, Melboroune, Australia, vol. 3, pp. 924–927 (2001)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  13. Holland, P.W., Welsch, R.E.: Robust Regression Using Iteratively Reweighted Least-squares. Communications in Statistics A6(9), 813–827 (1977)

    Article  Google Scholar 

  14. Huber, P.J.: Robust Statistics, 1st edn. Wiley, New York (1981)

    MATH  Google Scholar 

  15. Davé, R.N., Krishnapuram, R.: Robust clustering methods, A unified approach. IEEE Trans. Fuzzy Syst. 5(2), 270–293 (1997)

    Article  Google Scholar 

  16. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Component Analysers. Neural Computation 11, 443–482 (1999)

    Article  Google Scholar 

  17. Sun, F., Omachi, S., Aso, H.: Precise selection of candidates for hand written character recognition. IEICE Trans. Information and Systems E79-D(3) , 510–515 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ichihashi, H., Notsu, A., Honda, K. (2010). Fuzzy and Semi-hard c-Means Clustering with Application to Classifier Design. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11960-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11959-0

  • Online ISBN: 978-3-642-11960-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics