Abstract
The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
idQuantique, Geneva (Switzerland), www.idquantique.com ; MagiQ Technologies, Inc., New York., www.magiqtech.com ; and Smartquantum, Lannion (France), www.smartquantum.com
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The Security of Practical Quantum Key Distribution. Rev. Mod. Phys. (accepted for publication, 2009), Preprint quant-ph/0802.4155
Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental Quantum Cryptography. Cryptology 5, 3–28 (1992)
Marand, C., Townsend, P.D.: Quantum key distribution over distances as long as 30 km. Opt. Lett. 20, 1695–1697 (1995)
Muller, A., Zbinden, H., Gisin, N.: Underwater quantum coding. Nature 378, 449–449 (1995)
Hughes, R., Morgan, G., Peterson, C.G.: Quantum key distribution over a 48km optical fibre network. J. Mod. Opt. 47, 533–547 (2000)
Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum Cryptography with Coherent States. Phys. Rev. A 51, 1863–1869 (1995)
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on Practical Quantum Cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)
Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599–627 (2007)
Gottesman, D., Lo, H.-K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)
Hwang, W.-Y.: Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 91, 57901 (2003)
Lo, H.-K., Ma, X., Chen, K.: Decoy State Quantum Key Distribution. Phys. Rev. Lett. 94, 230504 (2005)
Wang, X.-B.: Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental Quantum Key Distribution with Decoy States. Phys. Rev. Lett. 96, 070502 (2006)
Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber. Phys. Rev. Lett. 98, 010503 (2007)
Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A., Weinfurter, H.: Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)
Mauerer, W., Silberhorn, C.: Quantum Key Distribution with Passive Decoy State Selection. Phys. Rev. A 75, 050305(R) (2007)
Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and Efficient Quantum Key Distribution with Parametric Down-Conversion. Phys. Rev. Lett. 99, 180503 (2007)
Ma, X., Lo, H.-K.: Quantum Key Distribution with Triggering Parametric Down-Conversion Sources. New J. Phys. 10, 073018 (2008)
Curty, M., Moroder, T., Ma, X., Lütkenhaus, N.: Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution. Accepted for publication in Opt. Lett. (2009)
Curty, M., Ma, X., Qi, B., Moroder, T., Lütkenhaus, N.: In preparation (2009)
Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Passive decoy-state quantum cryptography with pseudo-single-photon sources. In: 8th Asian Conference on Quantum Information Science (AQIS 2008), Seoul, pp. 25–26 (2008)
Rohde, P.P., Ralph, T.C.: Modelling photo-detectors in quantum optics. J. Mod. Opt. 53, 1589–1603 (2006)
Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)
Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, London (1985)
Lo, H.-K.: Getting something out of nothing. Quantum Inf. Comput. 5, 413–418 (2005)
Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of Its unconditional security. J. Cryptology 18, 133–165 (2005)
Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)
Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, 3rd edn. Wiley, Chichester (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Curty, M., Moroder, T., Ma, X., Lütkenhaus, N. (2010). Passive Decoy State Quantum Key Distribution. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-11731-2_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11730-5
Online ISBN: 978-3-642-11731-2
eBook Packages: Computer ScienceComputer Science (R0)