[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Passive Decoy State Quantum Key Distribution

  • Conference paper
Quantum Communication and Quantum Networking (QuantumComm 2009)

Abstract

The use of decoy states enhances the performance of practical quantum key distribution systems significantly by monitoring the quantum channel in a more detailed way. While active modulation of the intensity of the pulses is an effective way of preparing decoy states in principle, in practice passive preparation might be desirable in some scenarios. Known passive methods involve parametric down-conversion. In this paper we show how phase randomized coherent states can be used for the same purpose. Our method involves only linear optics together with a simple threshold photon detector. The performace is comparable to the active decoy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. idQuantique, Geneva (Switzerland), www.idquantique.com ; MagiQ Technologies, Inc., New York., www.magiqtech.com ; and Smartquantum, Lannion (France), www.smartquantum.com

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The Security of Practical Quantum Key Distribution. Rev. Mod. Phys. (accepted for publication, 2009), Preprint quant-ph/0802.4155

    Google Scholar 

  3. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental Quantum Cryptography. Cryptology 5, 3–28 (1992)

    MATH  Google Scholar 

  4. Marand, C., Townsend, P.D.: Quantum key distribution over distances as long as 30 km. Opt. Lett. 20, 1695–1697 (1995)

    Article  Google Scholar 

  5. Muller, A., Zbinden, H., Gisin, N.: Underwater quantum coding. Nature 378, 449–449 (1995)

    Article  Google Scholar 

  6. Hughes, R., Morgan, G., Peterson, C.G.: Quantum key distribution over a 48km optical fibre network. J. Mod. Opt. 47, 533–547 (2000)

    MathSciNet  Google Scholar 

  7. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum Cryptography with Coherent States. Phys. Rev. A 51, 1863–1869 (1995)

    Article  Google Scholar 

  8. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on Practical Quantum Cryptography. Phys. Rev. Lett. 85, 1330–1333 (2000)

    Article  MATH  Google Scholar 

  9. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

    Google Scholar 

  10. Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599–627 (2007)

    Article  Google Scholar 

  11. Gottesman, D., Lo, H.-K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Hwang, W.-Y.: Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 91, 57901 (2003)

    Article  Google Scholar 

  13. Lo, H.-K., Ma, X., Chen, K.: Decoy State Quantum Key Distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  Google Scholar 

  14. Wang, X.-B.: Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  Google Scholar 

  15. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental Quantum Key Distribution with Decoy States. Phys. Rev. Lett. 96, 070502 (2006)

    Article  Google Scholar 

  16. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  Google Scholar 

  17. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G., Zeilinger, A., Weinfurter, H.: Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  Google Scholar 

  18. Mauerer, W., Silberhorn, C.: Quantum Key Distribution with Passive Decoy State Selection. Phys. Rev. A 75, 050305(R) (2007)

    Article  Google Scholar 

  19. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Simple and Efficient Quantum Key Distribution with Parametric Down-Conversion. Phys. Rev. Lett. 99, 180503 (2007)

    Article  Google Scholar 

  20. Ma, X., Lo, H.-K.: Quantum Key Distribution with Triggering Parametric Down-Conversion Sources. New J. Phys. 10, 073018 (2008)

    Article  Google Scholar 

  21. Curty, M., Moroder, T., Ma, X., Lütkenhaus, N.: Non-Poissonian statistics from Poissonian light sources with application to passive decoy state quantum key distribution. Accepted for publication in Opt. Lett. (2009)

    Google Scholar 

  22. Curty, M., Ma, X., Qi, B., Moroder, T., Lütkenhaus, N.: In preparation (2009)

    Google Scholar 

  23. Adachi, Y., Yamamoto, T., Koashi, M., Imoto, N.: Passive decoy-state quantum cryptography with pseudo-single-photon sources. In: 8th Asian Conference on Quantum Information Science (AQIS 2008), Seoul, pp. 25–26 (2008)

    Google Scholar 

  24. Rohde, P.P., Ralph, T.C.: Modelling photo-detectors in quantum optics. J. Mod. Opt. 53, 1589–1603 (2006)

    Article  MATH  Google Scholar 

  25. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)

    Article  Google Scholar 

  26. Arfken, G.: Mathematical Methods for Physicists, 3rd edn. Academic Press, London (1985)

    MATH  Google Scholar 

  27. Lo, H.-K.: Getting something out of nothing. Quantum Inf. Comput. 5, 413–418 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Lo, H.-K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and a proof of Its unconditional security. J. Cryptology 18, 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  Google Scholar 

  30. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, 3rd edn. Wiley, Chichester (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Curty, M., Moroder, T., Ma, X., Lütkenhaus, N. (2010). Passive Decoy State Quantum Key Distribution. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds) Quantum Communication and Quantum Networking. QuantumComm 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11731-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11731-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11730-5

  • Online ISBN: 978-3-642-11731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics