[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Variable Down-Selection for Brain-Computer Interfaces

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2009)

Abstract

A new formulation of principal component analysis (PCA) that considers group structure in the data is proposed as a variable down-selection method. Optimization of electrode channels is a key problem in brain-computer interfaces (BCI). BCI experiments generate large feature spaces compared to the sample size due to time limitations in EEG sessions. It is essential to understand the importance of the features in terms of physical electrode channels in order to design a high performance yet realistic BCI. The proposed algorithm produces a ranked list of original variables (electrode channels or features), according to their ability to discriminate movement imagery tasks. A linear discrimination analysis (LDA) classifier is applied to the selected variable subset. Evaluation of the down-selection method using synthetic datasets selected more than 83% of relevant variables. Classification of imagery tasks using real BCI datasets resulted in less than 19% classification error. Across-Group Variance (AGV) showed the best classification performance with the largest dimensionality reduction in comparison with other algorithms in common use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain–Computer Interface Research at the Wadsworth Center. IEEE Transactions On Rehabilitation Engineering 8, 222–226 (2000)

    Article  Google Scholar 

  2. Pfurtscheller, G., Aranibar, A.: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movements. Electroencephalogr. Clin. Neurophysiol. 46, 138–146 (1979)

    Article  Google Scholar 

  3. Babiloni, C., et al.: Human movement-related potentials vs desynchronization of EEG alpha rhythm: A high-resolution EEG study. NeuroImage 10, 658–665 (1999)

    Article  Google Scholar 

  4. Donchin, E., Spencer, K.M., Wijesinghe, R.: The Mental Prosthesis: Assessing the Speed of a P300-Based Brain–Computer Interface. IEEE Transactions on Rehabilitation Engineering 8, 174–179 (2000)

    Article  Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, Hoboken (2000)

    Google Scholar 

  6. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: Cohen, W.W., Hirsh, H. (eds.) Proc. 11th Int. Conf. Machine Learning, pp. 121–129. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  7. Yu, L., Liu, H.: Efficient feature Selection via Analysis of Relevance and Redundancy. Journal of Machine Learning 5, 1205–1224 (2004)

    MathSciNet  Google Scholar 

  8. Dillon, W.R., Mulani, N., Frederick, D.G.: On the use of component scores in the presence of group structure. Journal of Consumer Research 16, 106–112 (1989)

    Article  Google Scholar 

  9. Kamrunnahar, M., Dias, N.S., Schiff, S.J.: Model-based Responses and Features in Brain Computer Interfaces. In: Proc. 30th IEEE EMBC, pp. 4482–4485. IEEE Press, Vancouver (2008)

    Google Scholar 

  10. Millán, J., Franzé, M., Mouriño, J., Cincotti, F., Babiloni, F.: Relevant EEG features for the classification of spontaneous motor-related tasks. Biol. Cybern. 86, 89–95 (2002)

    Article  MATH  Google Scholar 

  11. Schröder, L.T., Weston, T., Bogdan, J., Birbaumer, M., Schölkopf, N.B.: Support vector channel selection in BCI. IEEE Trans. Biomed. Eng. 51, 1003–1010 (2004)

    Article  Google Scholar 

  12. Schröder, M., Bogdan, M., Rosenstiel, W., Hinterberger, T., Birbaumer, N.: Automated EEG feature selection for brain computer interfaces. In: Proc. 1st IEEE EMBS Neural Eng., pp. 626–629. IEEE Press, Capri Island (2003)

    Google Scholar 

  13. Blankertz, B., et al.: The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 153–159 (2006)

    Article  Google Scholar 

  14. Lai, C., Reinders, M.J.T., Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognition Letters 27, 1067–1076 (2006)

    Article  Google Scholar 

  15. Luck, S.J.: An Introduction to the Event-Related Potential Technique. The MIT Press, Cambridge (2005)

    Google Scholar 

  16. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Nat. Acad. Sci. U.S.A. 101, 17849–17854 (2004)

    Article  Google Scholar 

  17. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, D.J., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  18. Schiff, S.J., Sauer, T., Kumar, R., Weinstein, S.L.: Neuronal spatiotemporal pattern discrimination: the dynamical evolution of seizures. Neuroimage 28, 1043–1055 (2005)

    Article  Google Scholar 

  19. Flury, B.: A first course in multivariate statistics. Springer, New York (1997)

    MATH  Google Scholar 

  20. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  21. Xie, Z., Hu, Q., Yu, D.: Improved feature selection algorithm based on SVM and correlation. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1373–1380. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dias, N.S., Kamrunnahar, M., Mendes, P.M., Schiff, S.J., Correia, J.H. (2010). Variable Down-Selection for Brain-Computer Interfaces. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2009. Communications in Computer and Information Science, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11721-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11721-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11720-6

  • Online ISBN: 978-3-642-11721-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics