[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Quadrangular Parameterization for Reverse Engineering

  • Conference paper
Mathematical Methods for Curves and Surfaces (MMCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5862))

Abstract

The aim of Reverse Engineering is to convert an unstructured representation of a geometric object, emerging e.g. from laser scanners, into a natural, structured representation in the spirit of CAD models, which is suitable for numerical computations. Therefore we present a user-controlled, as isometric as possible parameterization technique which is able to prescribe geometric features of the input and produces high-quality quadmeshes with low distortion. Starting with a coarse, user-prescribed layout this is achieved by using affine functions for the transition between non-orthogonal quadrangular charts of a global parameterization. The shape of each chart is optimized non-linearly for isometry of the underlying parameterization to produce meshes with low edge-length distortion. To provide full control over the meshing alignment the user can additionally tag an arbitrary subset of the layout edges which are guaranteed to be represented by enforcing them to lie on iso-lines of the parameterization but still allowing the global parameterization to relax in the direction of the iso-lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. Research report, AIM@SHAPE Network of Excellence (2005)

    Google Scholar 

  2. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: theory and practice. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 courses, p. 1. ACM, New York (2007)

    Google Scholar 

  3. Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics. Special issue for SIGGRAPH conference, 485–493 (2003)

    Google Scholar 

  4. Marinov, M., Kobbelt, L.: Direct anisotropic quad-dominant remeshing. In: PG 2004: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, Washington, DC, USA, pp. 207–216. IEEE Computer Society, Los Alamitos (2004)

    Chapter  Google Scholar 

  5. Khodakovsky, A., Litke, N., Schröder, P.: Globally smooth parameterizations with low distortion. In: SIGGRAPH 2003: ACM SIGGRAPH 2003 Papers, pp. 350–357. ACM, New York (2003)

    Google Scholar 

  6. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)

    Article  Google Scholar 

  7. Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using branched coverings. Computer Graphics Forum 26(3), 375–384 (2007)

    Article  MATH  Google Scholar 

  8. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H.: Spectral quadrangulation with orientation and alignment control. In: SIGGRAPH Asia 2008: ACM SIGGRAPH Asia 2008 Papers (2008) (to appear)

    Google Scholar 

  9. Ray, N., Vallet, B., Li, W.C., Lévy, B.: N-symmetry direction field design. ACM Transactions on Graphics (2008); Presented at SIGGRAPH

    Google Scholar 

  10. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. In: SIGGRAPH 2006: ACM SIGGRAPH 2006 Papers, pp. 1057–1066. ACM, New York (2006)

    Google Scholar 

  11. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, Aire-la-Ville, Switzerland, pp. 201–210. Eurographics Association (2006)

    Google Scholar 

  12. Botsch, M., Bommes, D., Kobbelt, L.: Efficient linear system solvers for mesh processing. In: Martin, R., Bez, H.E., Sabin, M.A. (eds.) IMA 2005. LNCS, vol. 3604, pp. 62–83. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bommes, D., Vossemer, T., Kobbelt, L. (2010). Quadrangular Parameterization for Reverse Engineering. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, JL., Mørken, K., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2008. Lecture Notes in Computer Science, vol 5862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11620-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11620-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11619-3

  • Online ISBN: 978-3-642-11620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics