Abstract
This paper provides a closed-form expression for Outage Secrecy Capacity in Wireless Information-Theoretic Security. This is accomplished on the basis of an approximation of the exponential function via a first-order Taylor series. The error of this method is calculated for two different channel cases, and the resulting precision confirms the correctness of this approach. Thus, the Outage Secrecy Capacity can be calculated for a given Outage Probability and for a given propagation environment (path loss exponent, average main channel SNR), allowing us to estimate with increased precision the boundaries of secure communications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shannon, C.E.: Communication theory of secrecy systems. Bell Tech. J. 29, 656–715 (1949)
Wyner, A.D.: The wire-tap channel. Bell Tech. J. 54, 1355–1387 (1975)
Csiszar, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Th. 24(3), 339–348 (1978)
Leung-Yan-Cheong, S.K., Hellman, M.E.: The Gaussian wiretap channel. IEEE Trans. Inf. Th. 24(4), 451–456 (1978)
Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Th. 39(3), 733–742 (1993)
Maurer, U.M.: Information-theoretically secure secret-key agreement by NOT authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)
Maurer, U.M., Wolf, S.: Information-theoretic key agreement: from weak to strong secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 351–368. Springer, Heidelberg (2000)
Maurer, U.M., Wolf, S.: Secret-key agreement over unauthenticated public channels Part I: Definitions and a completeness result. IEEE Trans. Inf. Th. 49(4), 822–831 (2003)
Barros, J., Rodrigues, M.R.D.: Secrecy capacity of wireless channels. In: 2006 IEEE International Symposium on Information Theory, pp. 356–360. IEEE Press, New York (2006)
Bloch, M., Barros, J., Rodrigues, M.R.D., McLaughlin, S.W.: Wireless Information-Theoretic Security. IEEE Trans. Inf. Th. 54(6), 2515–2534 (2008)
Bloch, M., Thangaraj, A., McLaughlin, S.W., Merolla, J.M.: LDPC-based Gaussian key reconciliation. In: 2006 IEEE Information Theory Workshop, pp. 116–120. IEEE Press, New York (2006)
Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Th. 47(2), 619–637 (2001)
Rappaport, T.: Wireless Communications: Principles and Practice. Prentice Hall, Upper Saddle River (2001)
Seybold, J.: Introduction to RF Propagation. Wiley Interscience, Hoboken (2005)
Chrysikos, T., Kotsopoulos, S.: Impact of channel-dependent variation of path loss exponent on Wireless Information-Theoretic Security. In: Wireless Telecommunications Symposium 2009, April 22-24, pp. 1–7. IEEE Press, New York (2009)
Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1970)
Kotsopoulos, S., Karagiannidis, G.: Mobile Communication. Papasotiriou SA Publication, Athens (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Chrysikos, T., Dagiuklas, T., Kotsopoulos, S. (2010). A Closed-Form Expression for Outage Secrecy Capacity in Wireless Information-Theoretic Security. In: Gu, Q., Zang, W., Yu, M. (eds) Security in Emerging Wireless Communication and Networking Systems. SEWCN 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11526-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-11526-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11525-7
Online ISBN: 978-3-642-11526-4
eBook Packages: Computer ScienceComputer Science (R0)