[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Closed-Form Expression for Outage Secrecy Capacity in Wireless Information-Theoretic Security

  • Conference paper
Security in Emerging Wireless Communication and Networking Systems (SEWCN 2009)

Abstract

This paper provides a closed-form expression for Outage Secrecy Capacity in Wireless Information-Theoretic Security. This is accomplished on the basis of an approximation of the exponential function via a first-order Taylor series. The error of this method is calculated for two different channel cases, and the resulting precision confirms the correctness of this approach. Thus, the Outage Secrecy Capacity can be calculated for a given Outage Probability and for a given propagation environment (path loss exponent, average main channel SNR), allowing us to estimate with increased precision the boundaries of secure communications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shannon, C.E.: Communication theory of secrecy systems. Bell Tech. J. 29, 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wyner, A.D.: The wire-tap channel. Bell Tech. J. 54, 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Csiszar, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Th. 24(3), 339–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Leung-Yan-Cheong, S.K., Hellman, M.E.: The Gaussian wiretap channel. IEEE Trans. Inf. Th. 24(4), 451–456 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Th. 39(3), 733–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Maurer, U.M.: Information-theoretically secure secret-key agreement by NOT authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Maurer, U.M., Wolf, S.: Information-theoretic key agreement: from weak to strong secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 351–368. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Maurer, U.M., Wolf, S.: Secret-key agreement over unauthenticated public channels Part I: Definitions and a completeness result. IEEE Trans. Inf. Th. 49(4), 822–831 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barros, J., Rodrigues, M.R.D.: Secrecy capacity of wireless channels. In: 2006 IEEE International Symposium on Information Theory, pp. 356–360. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  10. Bloch, M., Barros, J., Rodrigues, M.R.D., McLaughlin, S.W.: Wireless Information-Theoretic Security. IEEE Trans. Inf. Th. 54(6), 2515–2534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bloch, M., Thangaraj, A., McLaughlin, S.W., Merolla, J.M.: LDPC-based Gaussian key reconciliation. In: 2006 IEEE Information Theory Workshop, pp. 116–120. IEEE Press, New York (2006)

    Chapter  Google Scholar 

  12. Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Th. 47(2), 619–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rappaport, T.: Wireless Communications: Principles and Practice. Prentice Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  14. Seybold, J.: Introduction to RF Propagation. Wiley Interscience, Hoboken (2005)

    Book  Google Scholar 

  15. Chrysikos, T., Kotsopoulos, S.: Impact of channel-dependent variation of path loss exponent on Wireless Information-Theoretic Security. In: Wireless Telecommunications Symposium 2009, April 22-24, pp. 1–7. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  16. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1970)

    MATH  Google Scholar 

  17. Kotsopoulos, S., Karagiannidis, G.: Mobile Communication. Papasotiriou SA Publication, Athens (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Chrysikos, T., Dagiuklas, T., Kotsopoulos, S. (2010). A Closed-Form Expression for Outage Secrecy Capacity in Wireless Information-Theoretic Security. In: Gu, Q., Zang, W., Yu, M. (eds) Security in Emerging Wireless Communication and Networking Systems. SEWCN 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11526-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11526-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11525-7

  • Online ISBN: 978-3-642-11526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics