[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving NP-Complete Problems by Spiking Neural P Systems with Budding Rules

  • Conference paper
Membrane Computing (WMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5957))

Included in the following conference series:

Abstract

Inspired by the growth of dendritic trees in biological neurons, we introduce spiking neural P systems with budding rules. By applying these rules in a maximally parallel way, a spiking neural P system can exponentially increase the size of its synapse graph in a polynomial number of computation steps. Such a possibility can be exploited to efficiently solve computationally difficult problems in deterministic polynomial time, as it is shown in this paper for the NP-complete decision problem sat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, H., Freund, R., Ionescu, M., Păun, G., Pérez-Jiménez, M.J.: On string languages generated by spiking neural P systems. Fundamenta Informaticae 75, 141–162 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Chen, H., Ionescu, M., Ishdorj, T.-O.: On the efficiency of spiking neural P systems. In: Proceedings of the 8th International Conference on Electronics, Information, and Communication, Ulanbator, Mongolia, June 2006, pp. 49–52 (2006)

    Google Scholar 

  3. Chen, H., Ionescu, M., Ishdorj, T.-O., Păun, A., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with extended rules. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC Report 02/2006, Research Group on Natural Computing, Sevilla University, Fénix Editora, vol. I, pp. 241–266 (2006)

    Google Scholar 

  4. Gerstner, W., Kistler, W.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  5. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2-3), 279–308 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Ishdorj, T.-O., Leporati, A.: Uniform solutions to sat and 3-sat by spiking neural P systems with pre-computed resources. Natural Computing 7(4), 519–534 (2008)

    Article  MATH  Google Scholar 

  7. Ishdorj, T.-O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to sat and 3-sat by spiking neural P systems with pre-computed resources (submitted for publication)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory on NP–Completeness. W.H. Freeman and Company, New York (1979)

    Google Scholar 

  9. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving Subset Sum by spiking neural P systems with pre-computed resources. Fundamenta Informaticae 87(1), 61–77 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform solutions to sat and Subset Sum by spiking neural P systems. Natural Computing (2008), doi:10.1007/s11047-008-9091-y

    Google Scholar 

  11. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 336–352. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the computational power of spiking neural P systems. International Journal of Unconventional Computing 5(5), 459–473 (2009)

    Google Scholar 

  13. Maass, W.: Computing with spikes. Special Issue on Foundations of Information Processing of TELEMATIK 8(1), 32–36 (2002)

    Google Scholar 

  14. Maass, W., Bishop, C. (eds.): Pulsed Neural Networks. MIT Press, Cambridge (1999)

    Google Scholar 

  15. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. In: Gutiérrez-Escudero, R., et al. (eds.) Seventh Brainstorming Week on Membrane Computing, RGNC Report 01/2009, Research Group on Natural Computing, Sevilla University, Fénix Editora, vol. II, pp. 151–167 (2009)

    Google Scholar 

  16. Păun, G.: Membrane Computing – An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  17. Păun, G.: Twenty six research topics about spiking neural P systems. In: Gutiérrez-Naranjo, M.A., et al. (eds.) Fifth Brainstorming Week on Membrane Computing, RGNC Report 01/2007, Research Group on Natural Computing, Sevilla University, Fénix Editora, pp. 263–280 (2007)

    Google Scholar 

  18. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company, Boston (1997)

    MATH  Google Scholar 

  19. The P systems Web page, http://ppage.psystems.eu/

  20. Think and Grow Toys, http://www.tagtoys.com/dendrites.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ishdorj, TO., Leporati, A., Pan, L., Wang, J. (2010). Solving NP-Complete Problems by Spiking Neural P Systems with Budding Rules. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2009. Lecture Notes in Computer Science, vol 5957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11467-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11467-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11466-3

  • Online ISBN: 978-3-642-11467-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics