Abstract
The first part of this paper presents a new approach for automatically proving nontermination of string rewrite systems. We encode rewrite sequences as propositional formulas such that a loop can be extracted from a satisfying assignment. Alternatively, loops can be found by enumerating forward closures. In the second part we give a formalization of loops in the theorem prover Isabelle/HOL. Afterwards, we use Isabelle’s code-generation facilities to certify loops. The integration of our approach in CeTA (a program for automatic certification of termination proofs) makes it the first tool capable of certifying nontermination.
This research is supported by FWF (Austrian Science Fund) project P18763.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. TCS 236(1-2), 133–178 (2000)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development; Coq’Art: The Calculus of Inductive Constructions. In: Texts in Theoretical Computer Science. An EATCS Series (2004)
Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski, A.: COLOR, a COQ Library on Rewriting and Termination. In: WST, pp. 69–73 (2006)
Clarke, A., Biere, A., Raimi, R., Zhu, Y.: Bounded Model Checking Using Satisfiability Solving. FMSD 19(1), 7–34 (2001)
Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of Automated Termination Proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (2007)
Cook, S.: The Complexity of Theorem-Proving Procedures. In: STOC, pp. 151–158 (1971)
Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)
Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. JAR 40(2-3), 195–220 (2008)
Geser, A., Hofbauer, D., Waldmann, J.: Termination Proofs for String Rewriting Systems via Inverse Match-Bounds. JAR 34(4), 365–385 (2005)
Geser, A., Zantema, H.: Non-Looping String Rewriting. TIA 33(3), 279–302 (1999)
Giesl, J., Thiemann, R., Schneider-Kamp, P.: The Dependency Pair Framework: Combining Techniques for Automated Termination Proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and Disproving Termination of Higher-Order Functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. JAR 37(3), 155–203 (2006)
Haftmann, F.: Code Generation from Specifications in Higher Order Logic. PhD Thesis, Technische Universität München (2009)
Hirokawa, N., Middeldorp, A.: Automating the Dependency Pair Method. I&C 199(1-2), 172–199 (2005)
Korp, M., Middeldorp, A.: Match-Bounds Revisited. I&C (2009), doi:10.1016/j.ic.2009.02.010
Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Oppelt, M.: Automatische Erkennung von Ableitungsmustern in nichtterminierenden Wortersetzungssystemen. Master’s Thesis, HTWK Leipzig, FH (2008)
Payet, É.: Loop Detection in Term Rewriting Using the Eliminating Unfoldings. TCS 403(2-3), 307–327 (2008)
Plaisted, D., Greenbaum, S.: A Structure-Preserving Clause Form Translation. JSC 2(3), 293–304 (1986)
Thiemann, R., Sternagel, C.: Certification of Termination Proofs Using CeTA. In: Berghofer, S., et al. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 452–468. Springer, Heidelberg (2009)
Waldmann, J.: Matchbox: A Tool for Match-Bounded String Rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)
Waldmann, J.: Compressed Loops, Draft (2007), http://dfa.imn.htwk-leipzig.de/matchbox/methods/loop.pdf
Zankl, H.: Lazy Termination Analysis. PhD Thesis, University of Innsbruck (2009)
Zantema, H.: Termination of String Rewriting Proved Automatically. JAR 34(2), 105–139 (2005)
Zantema, H.: Termination. In: TeReSe (ed.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zankl, H., Sternagel, C., Hofbauer, D., Middeldorp, A. (2010). Finding and Certifying Loops. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds) SOFSEM 2010: Theory and Practice of Computer Science. SOFSEM 2010. Lecture Notes in Computer Science, vol 5901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11266-9_63
Download citation
DOI: https://doi.org/10.1007/978-3-642-11266-9_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11265-2
Online ISBN: 978-3-642-11266-9
eBook Packages: Computer ScienceComputer Science (R0)