Abstract
This paper proposes an iterative clustering procedure for finding protein motifs which do not necessarily correspond to secondary structures, or to features along the protein backbone. We show the applicability of our method to two important applications namely, protein structure matching, and automatically identifying active sites and other biologically significant sub-structures in proteins.
Chapter PDF
Similar content being viewed by others
Keywords
References
Holm, L., Sander, C.: Protein Structure Comparison by Alignment of Distance Matrices. Journal of Molecular Biology 233, 123–138 (1993)
Shindyalov, I.N., Bourne, P.E.: Protein Structure Alignment by Incremental Combinatorial Extension (CE) of the Optimal Path. Protein Engineering 11, 739–747 (1998)
Gibrat, J.F., Madej, T., Spouge, J.L., Bryant, S.H.: The VAST Protein Structure Comparison Method. Biophysics Journal 72, MP298 (1997)
Lu, G.: TOP: a new method for protein structure comparisons and similarity searches. Journal of Applied Crystallography 33, 176–183 (2000)
Harrison, A., Pearl, F., Sillitoe, I., Slidel, T., Mott, R., Thornton, J., Orengo, C.: Recognizing the fold of a protein structure. Bioinformatics 19, 1748–1759 (2003)
Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of Tertiary Structure Resemblance in Proteins Using a Maximal Common Subgraph Isomorphism Algorithm. Journal of Molecular Biology 229, 707–721 (1993)
Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding maximal common subtopologies in a set of protein structures. Journal of Computational Biology 3, 289–306 (1996)
Russell, R.B.: Detection of Protein Three-Dimensional Side-chain Patterns: New Examples of Convergent Evolution. Journal of Molecular Biology 279, 1211–1227 (1998)
Kannan, N., Vishveshwara, S.: Identification of side-chain clusters in protein structures by a graph spectral method. Journal of Molecular Biology 292, 441–464 (1999)
Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure Comparison and Structure Pattern. Journal of Computational Biology 7, 685–716 (2000)
Kolodny, R., Petrey, D., Honig, B.: Protein structure comparison: implications for the nature of ‘fold space’, and structure and function prediction. Current Opinion Structural Biology 16, 393–398 (2006)
Dundas, J., Binkowski, T., Dasgupta, B., Liang, J.: Topology independent protein structural alignment. BMC Bioinformatics 8, 388 (2007)
Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research 3, 583–617 (2002)
Goodman, L., Kruskal, W.: Measures of associations for cross-validations. Journal of American Statistical Association 49, 732–764 (1954)
Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: part II. SIGMOD Record 31, 19–27 (2002)
Bolshakova, N., Azuaje, F.: Cluster Validation Techniques for Genome Expression Data. Signal Processing 83, 825–833 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mamidipally, C., Noronha, S.B., Dutta Roy, S. (2009). Automated Identification of Protein Structural Features. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S., Pal, S.K. (eds) Pattern Recognition and Machine Intelligence. PReMI 2009. Lecture Notes in Computer Science, vol 5909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11164-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-11164-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11163-1
Online ISBN: 978-3-642-11164-8
eBook Packages: Computer ScienceComputer Science (R0)