[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fusion of Multiple Matchers Using SVM for Offline Signature Identification

  • Conference paper
Security Technology (SecTech 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 58))

Included in the following conference series:

Abstract

This paper uses Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature system. From the signature images, global and local features are extracted and the signatures are verified with the help of Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of these matchers. Finally, recognition of query signatures is done by comparing it with all signatures of the database. The proposed system is tested on a signature database contains 5400 offline signatures of 600 individuals and the results are found to be promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on Image- and Video-Based Biometrics 14(1), 4–20 (2004)

    Google Scholar 

  2. Justino, E.J.R., Bortolozzi, F., Sabourin, R.: Off-line Signature Verification Using HMM for Random, Simple and Skilled Forgeries. In: ICDAR 2001, International Conference on Document Analysis and Recognition, vol. 1, pp. 105–110 (2001)

    Google Scholar 

  3. Ismail, M.A., Gad, S.: Offline Arabic Signature Recognition and Verification. Pattern Recognition 33(10), 1727–1740 (2000)

    Article  Google Scholar 

  4. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition, 2nd edn. Springer, Heidelberg (2009)

    Google Scholar 

  5. Daugman, J.: How Iris Recognition Works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)

    Article  Google Scholar 

  6. Duta, N., Jain, A.K., Mardia, K.V.: Matching of Palmprint. Pattern Recognition Letters 23(4), 477–485 (2002)

    Article  MATH  Google Scholar 

  7. Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  8. Lv, H., Wang, W., Wang, C., Zhuo, Q.: Offline Chinese Signature Verification based on Support Vector Machines. Pattern Recognition Letters 26(15), 2390–2399 (2005)

    Article  Google Scholar 

  9. Bajaj, R., Chaudhuri, S.: Signature Verification using Multiple Neural Classifiers. Pattern Recognition 30(1), 1–7 (1997)

    Article  Google Scholar 

  10. Xu, A., Srihari, S.N., Kalera, M.K.: Learning Strategies for Signature Verification. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 161–166. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  11. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  12. Gutschoven, B., Verlinde, P.: Multi-Modal Identity Verification using Support Vector Machines (SVM). In: Proc. of the 3rd International Conference on Information Fusion (2000)

    Google Scholar 

  13. Kisku, D.R., Rattani, A., Sing, J.K., Gupta, P.: Offline Signature Verified with Multiple Classifiers: An Authentic Realization. In: International Conference on Advances in Computing, pp. 550–553 (2008)

    Google Scholar 

  14. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. (2000)

    Google Scholar 

  15. Huang, K., Yan, H.: Offline Signature Verification based on Geometric Feature Extraction and Neural Network Classification. Pattern Recognition 30(1), 9–17 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kisku, D.R., Gupta, P., Sing, J.K. (2009). Fusion of Multiple Matchers Using SVM for Offline Signature Identification. In: Ślęzak, D., Kim, Th., Fang, WC., Arnett, K.P. (eds) Security Technology. SecTech 2009. Communications in Computer and Information Science, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10847-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10847-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10846-4

  • Online ISBN: 978-3-642-10847-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics