[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Observation Angle Dependent Nonstationary Covariance Function for Gaussian Process Regression

  • Conference paper
Neural Information Processing (ICONIP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5863))

Included in the following conference series:

Abstract

Despite the success of Gaussian Processes (GPs) in machine learning, the range of applications and expressiveness of GP models are confined by the limited set of available covariance functions. This paper presents a new non-stationary covariance function which allows simple geometric interpretation and depends on the angle at which points can be seen from an observation centre. The construction of the new covariance function and the proof of its positive semi-definiteness are based on geometric reasoning combined with analytic computations. Experiments conducted with both artificial and real datasets demonstrate the advantages of the developed covariance function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  2. Williams, C.K.I.: Computation with infinite neural networks. Neural Computation 10(5), 1203–1216 (1998)

    Article  Google Scholar 

  3. Sugiyama, M., Hachiya, H., Towell, C., Vijayakumar, S.: Geodesic Gaussian kernels for value function approximation. In: Proceedings of 2006 Workshop on Information-Based Induction Sciences, Osaka, Japan, pp. 316–321 (2006)

    Google Scholar 

  4. Melkumyan, A., Ramos, F.: A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets. In: Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence, pp. 1936–1942 (2009)

    Google Scholar 

  5. Dubois, G., Malczewski, J., De Cort, M.: Mapping radioactivity in the environment. Spatial Interpolation Comparison 1997 (Eds.). EUR 20667 EN, EC (2003)

    Google Scholar 

  6. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Bottou, L., Chapelle, O., DeCoste, D., Weston, J.: Large-scale kernel machines. The MIT Press, Cambridge (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melkumyan, A., Nettleton, E. (2009). An Observation Angle Dependent Nonstationary Covariance Function for Gaussian Process Regression. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10677-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10677-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10676-7

  • Online ISBN: 978-3-642-10677-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics