Abstract
Newman et al. proposed a stochastic graph clustering approach using a mixture model with an assumption that a group of vertices is regarded as a class when the vertices have a similar connection pattern. Kuwata et al. recently adopted a nonparametric Bayesian approach and improved Newman’s one in such a way that the number of classes can also be empirically estimated. In this paper, we propose a new approach that can incorporate the degree distribution of the network structure as priors for Bayesian estimation. We show the effectiveness of our method through experiments using both artificial and real data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barabasi, A.-L.: Linked: The New Science of Networks. Perseus Books, Cambridge (2002)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)
Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech., P09008 (2005)
Fortunato, S., Castellano, C.: Community structure in graphs. In: Encyclopedia of Complexity and System Science. Springer, Heidelberg (2009)
Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory data analysis in networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007)
Kuwata, S., Ueda, N., Yamada, T.: Graph Clustering based on the Nonparametric Bayes Model. IEICE Technical Report, vol. 107, no. 115, PRMU2007-41, pp. 81–86 (2007) (in Japanese)
Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)
Roweis, S.: Data for MATLAB hackersNIPS Conference Papers., http://www.cs.toronto.edu/~roweis/data.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Harada, N., Ishikawa, Y., Takeuchi, I., Nakano, R. (2009). A Bayesian Graph Clustering Approach Using the Prior Based on Degree Distribution. In: Leung, C.S., Lee, M., Chan, J.H. (eds) Neural Information Processing. ICONIP 2009. Lecture Notes in Computer Science, vol 5863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10677-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-10677-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10676-7
Online ISBN: 978-3-642-10677-4
eBook Packages: Computer ScienceComputer Science (R0)