Abstract
We present an object detection technique that uses local edgels and their geometry to locate multiple objects in a range image in the presence of partial occlusion, background clutter, and depth changes. The fragmented local edgels (key-edgels) are efficiently extracted from a 3D edge map by separating them at their corner points. Each key-edgel is described using our scale invariant descriptor that encodes local geometric configuration by joining the edgel at their start and end points adjacent edgels. Using key-edgels and their descriptors, our model generates promising hypothetical locations in the image. These hypotheses are then verified using more discriminative features. The approach is evaluated on ten diverse object categories in a real-world environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)
van Dop, E.R., Regtien, P.P.L.: Object recognition from range images using superquadric representations. In: IAPR Workshop on Machine Vision Applications, Tokyo, Japan, pp. 267–270 (1996)
Li, S.Z.: Object recognition from range data prior to segmentation. Image Vision Comput. 10, 566–576 (1992)
Li, X., Guskov, I.: 3d object recognition from range images using pyramid matching. In: IEEE Int. Conf. on Computer Vision, Rio de Janeiro, Brazil, pp. 1–6 (2007)
Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. Pattern Recognition Letters 28, 1252–1262 (2007)
Bosch, A., Zisserman, A., Muñoz, X.: Representing shape with spatial pyramid kernel. In: ACM Int. Conf. on Image and Video Retrieval, Amsterdam, The Netherlands, pp. 401–408 (2007)
Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Group of adjacent contour segment for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 30, 30–51 (2008)
Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: IEEE Int. Conf. on Computer Vision, Beijing, China, pp. 503–510. IEEE Computer Society, Los Alamitos (2005)
Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)
Wani, M.A., Batchelor, B.G.: Edge-region-based segmentation of range images. IEEE Trans. Pattern Anal. Mach. Intell. 16, 314–319 (1994)
Sood, A.K., Al-Hujazi, E.: An integrated approach to segmentation of range images of industrial parts. In: IAPR Workshop on Machine Vision Applications, Kokubunji, Tokyo, Japan, pp. 27–30 (1990)
Katsoulas, D., Werber, A.: Edge detection in range images of piled box-like objects. In: Int. Conf. on Pattern Recognition, pp. 80–84. IEEE Computer Society, Los Alamitos (2004)
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42, 177–196 (2001)
He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Int. Conf. on Pattern Recognition, pp. 791–794 (2004)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: European Conf. on Computer Vision, Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic (2004)
Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines (2008), http://www.csie.ntu.edu.tw/cjlin/libsvm/
Das, D., Mansur, A., Kobayashi, Y., Kuno, Y.: An integrated method for multiple object detection and localization. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 133–144. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Das, D., Kobayashi, Y., Kuno, Y. (2009). Object Detection and Localization in Clutter Range Images Using Edge Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-10520-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10519-7
Online ISBN: 978-3-642-10520-3
eBook Packages: Computer ScienceComputer Science (R0)