[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Object Detection and Localization in Clutter Range Images Using Edge Features

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5876))

Included in the following conference series:

Abstract

We present an object detection technique that uses local edgels and their geometry to locate multiple objects in a range image in the presence of partial occlusion, background clutter, and depth changes. The fragmented local edgels (key-edgels) are efficiently extracted from a 3D edge map by separating them at their corner points. Each key-edgel is described using our scale invariant descriptor that encodes local geometric configuration by joining the edgel at their start and end points adjacent edgels. Using key-edgels and their descriptors, our model generates promising hypothetical locations in the image. These hypotheses are then verified using more discriminative features. The approach is evaluated on ten diverse object categories in a real-world environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21, 433–449 (1999)

    Article  Google Scholar 

  2. van Dop, E.R., Regtien, P.P.L.: Object recognition from range images using superquadric representations. In: IAPR Workshop on Machine Vision Applications, Tokyo, Japan, pp. 267–270 (1996)

    Google Scholar 

  3. Li, S.Z.: Object recognition from range data prior to segmentation. Image Vision Comput. 10, 566–576 (1992)

    Article  Google Scholar 

  4. Li, X., Guskov, I.: 3d object recognition from range images using pyramid matching. In: IEEE Int. Conf. on Computer Vision, Rio de Janeiro, Brazil, pp. 1–6 (2007)

    Google Scholar 

  5. Chen, H., Bhanu, B.: 3d free-form object recognition in range images using local surface patches. Pattern Recognition Letters 28, 1252–1262 (2007)

    Article  Google Scholar 

  6. Bosch, A., Zisserman, A., Muñoz, X.: Representing shape with spatial pyramid kernel. In: ACM Int. Conf. on Image and Video Retrieval, Amsterdam, The Netherlands, pp. 401–408 (2007)

    Google Scholar 

  7. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Group of adjacent contour segment for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 30, 30–51 (2008)

    Article  Google Scholar 

  8. Shotton, J., Blake, A., Cipolla, R.: Contour-based learning for object detection. In: IEEE Int. Conf. on Computer Vision, Beijing, China, pp. 503–510. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  9. Opelt, A., Pinz, A., Zisserman, A.: A boundary-fragment-model for object detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 575–588. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Wani, M.A., Batchelor, B.G.: Edge-region-based segmentation of range images. IEEE Trans. Pattern Anal. Mach. Intell. 16, 314–319 (1994)

    Article  Google Scholar 

  11. Sood, A.K., Al-Hujazi, E.: An integrated approach to segmentation of range images of industrial parts. In: IAPR Workshop on Machine Vision Applications, Kokubunji, Tokyo, Japan, pp. 27–30 (1990)

    Google Scholar 

  12. Katsoulas, D., Werber, A.: Edge detection in range images of piled box-like objects. In: Int. Conf. on Pattern Recognition, pp. 80–84. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  13. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42, 177–196 (2001)

    Article  MATH  Google Scholar 

  14. He, X.C., Yung, N.H.C.: Curvature scale space corner detector with adaptive threshold and dynamic region of support. In: Int. Conf. on Pattern Recognition, pp. 791–794 (2004)

    Google Scholar 

  15. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: European Conf. on Computer Vision, Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic (2004)

    Google Scholar 

  16. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines (2008), http://www.csie.ntu.edu.tw/cjlin/libsvm/

  17. Das, D., Mansur, A., Kobayashi, Y., Kuno, Y.: An integrated method for multiple object detection and localization. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 133–144. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, D., Kobayashi, Y., Kuno, Y. (2009). Object Detection and Localization in Clutter Range Images Using Edge Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10520-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10520-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10519-7

  • Online ISBN: 978-3-642-10520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics