[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Relinkable Ring Signature

  • Conference paper
Cryptology and Network Security (CANS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5888))

Included in the following conference series:

Abstract

In this paper, we propose the concept of a relinkable ring signature, which is a ring signature with ring reformation function, i.e., a signer can delegate ring reformation ability separately from signing ability to his/her proxy. The relinkable ring signature can be applicable to proxy ring reformation, anonymization of past-generated signature, or ring signature for dynamic group. We also propose a concrete relinkable ring signature scheme that uses pairing in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insubvertible encryption. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conference on Computer and Communications Security, pp. 92–101. ACM, New York (2005)

    Google Scholar 

  2. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. Cryptology ePrint Archive: 2005/385 (2005)

    Google Scholar 

  3. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)

    Google Scholar 

  5. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage. Technical Report TR-SP-BGMM-050705, Johns Hopkins University, CS Dept, 2005 (2005)

    Google Scholar 

  6. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Google Scholar 

  10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

    Google Scholar 

  11. Dupont, R., Enge, A., Morain, F.: Building curves with arbitrary small mov degree over finite prime fields. J. Cryptology 18(2), 79–89 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Joux, A., Nguyen, K.: Separating decision diffie-hellman from diffie-hellman in cryptographic groups. Cryptology ePrint Archive: 2001/003 (2001)

    Google Scholar 

  14. Liu, D.Y.W., Liu, J.K., Mu, Y., Susilo, W., Wong, D.S.: Revocable ring signature. J. Comput. Sci. Technol. 22(6), 785–794 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lee, K.C., Wei, H., Hwang, T.: Convertible ring signature. IEE Proceedings of Communications 152(4), 411–414 (2005)

    Article  Google Scholar 

  16. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for fr-reduction. IEICE Transactions on Fundamentals E84-A(5), 1234–1243 (2001)

    Google Scholar 

  17. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Scott, M., Barreto, P.S.L.M.: Generating more mnt elliptic curves. Des. Codes Cryptography 38(2), 209–217 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Scott, M.: Authenticated id-based key exchange and remote log-in with simple token and pin number. Cryptology ePrint Archive: 2002/164 (2002)

    Google Scholar 

  21. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)

    Google Scholar 

  22. Saito, T., Hoshino, F., Uchiyama, S., Kobayashi, T.: Candidate one-way functions on non-supersingular elliptic curves. Technical Report of IEICE, ISEC 2003-65 (2003)

    Google Scholar 

  23. Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 195–210. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, K., Hoshino, F., Kobayashi, T. (2009). Relinkable Ring Signature. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds) Cryptology and Network Security. CANS 2009. Lecture Notes in Computer Science, vol 5888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10433-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10433-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10432-9

  • Online ISBN: 978-3-642-10433-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics