[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards Interpreting Task-Oriented Utterance Sequences

  • Conference paper
AI 2009: Advances in Artificial Intelligence (AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Included in the following conference series:

  • 1675 Accesses

Abstract

This paper describes a probabilistic mechanism for the interpretation of utterance sequences in a task-oriented domain. The mechanism receives as input a sequence of sentences, and produces an interpretation which integrates the interpretations of individual sentences. For our evaluation, we collected a corpus of hypothetical requests to a robot, which comprise different numbers of sentences of different length and complexity. Our results are promising, but further improvements are required in our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zukerman, I., Makalic, E., Niemann, M., George, S.: A probabilistic approach to the interpretation of spoken utterances. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 581–592. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Zukerman, I., Makalic, E., Niemann, M.: Interpreting two-utterance requests in a spoken dialogue system. In: Proceedings of the 6th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Pasadena, California, pp. 19–27 (2009)

    Google Scholar 

  3. Charniak, E.: Maximum-entropy-inspired parser. In: The 2nd Meeting of the North American Chapter of the Association for Computational Linguistics, Seattle, USA, pp. 132–139 (2000)

    Google Scholar 

  4. Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  5. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39–71 (1996)

    Google Scholar 

  6. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 265–285. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Lappin, S., Leass, H.: An algorithm for pronominal anaphora resolution. Computational Linguistics 20, 535–561 (1994)

    Google Scholar 

  8. Ng, H., Zhou, Y., Dale, R., Gardiner, M.: A machine learning approach to identification and resolution of one-anaphora. In: IJCAI 2005 – Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, pp. 1105–1110 (2005)

    Google Scholar 

  9. Ang, J., Dhillon, R., Krupski, A., Shriberg, E., Stolcke, A.: Prosody-based automatic detection of annoyance and frustration in human-computer dialog. In: ICSLP 2002 – Proceedings of the 7th International Conference on Spoken Language Processing, Denver, Colorado, pp. 2037–2040 (2002)

    Google Scholar 

  10. Larsson, S., Traum, D.: Information state and dialogue management in the TRINDI dialogue move engine toolkit. Natural Language Engineering 6, 323–340 (2000)

    Article  Google Scholar 

  11. Becker, T., Poller, P., Schehl, J., Blaylock, N., Gerstenberger, C., Kruijff-Korbayová, I.: The SAMMIE system: Multimodal in-car dialogue. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, Sydney, Australia, pp. 57–60 (2006)

    Google Scholar 

  12. He, Y., Young, S.: A data-driven spoken language understanding system. In: ASRU 2003 – Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, St. Thomas, US Virgin Islands, pp. 583–588 (2003)

    Google Scholar 

  13. Gorniak, P., Roy, D.: Probabilistic grounding of situated speech using plan recognition and reference resolution. In: ICMI 2005 – Proceedings of the 7th International Conference on Multimodal Interfaces, Trento, Italy, pp. 138–143 (2005)

    Google Scholar 

  14. Hong, J.H., Song, Y.S., Cho, S.B.: Mixed-initiative human-robot interaction using hierarchical Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part A 37(6), 1158–1164 (2007)

    Article  Google Scholar 

  15. Knight, S., Gorrell, G., Rayner, M., Milward, D., Koeling, R., Lewin, I.: Comparing grammar-based and robust approaches to speech understanding: A case study. In: Proceedings of Eurospeech 2001, Aalborg, Denmark, pp. 1779–1782 (2001)

    Google Scholar 

  16. Horvitz, E., Paek, T.: DeepListener: Harnessing expected utility to guide clarification dialog in spoken language systems. In: ICSLP 2000 – Proceedings of the 6th International Conference on Spoken Language Processing, Beijing, China, pp. 226–229 (2000)

    Google Scholar 

  17. Bohus, D., Rudnicky, A.: Constructing accurate beliefs in spoken dialog systems. In: ASRU 2005 – Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, San Juan, Puerto Rico, pp. 272–277 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ye, P., Zukerman, I. (2009). Towards Interpreting Task-Oriented Utterance Sequences. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics