Abstract
This paper describes a probabilistic mechanism for the interpretation of utterance sequences in a task-oriented domain. The mechanism receives as input a sequence of sentences, and produces an interpretation which integrates the interpretations of individual sentences. For our evaluation, we collected a corpus of hypothetical requests to a robot, which comprise different numbers of sentences of different length and complexity. Our results are promising, but further improvements are required in our algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zukerman, I., Makalic, E., Niemann, M., George, S.: A probabilistic approach to the interpretation of spoken utterances. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 581–592. Springer, Heidelberg (2008)
Zukerman, I., Makalic, E., Niemann, M.: Interpreting two-utterance requests in a spoken dialogue system. In: Proceedings of the 6th IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Pasadena, California, pp. 19–27 (2009)
Charniak, E.: Maximum-entropy-inspired parser. In: The 2nd Meeting of the North American Chapter of the Association for Computational Linguistics, Seattle, USA, pp. 132–139 (2000)
Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)
Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language processing. Computational Linguistics 22(1), 39–71 (1996)
Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp. 265–285. MIT Press, Cambridge (1998)
Lappin, S., Leass, H.: An algorithm for pronominal anaphora resolution. Computational Linguistics 20, 535–561 (1994)
Ng, H., Zhou, Y., Dale, R., Gardiner, M.: A machine learning approach to identification and resolution of one-anaphora. In: IJCAI 2005 – Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, pp. 1105–1110 (2005)
Ang, J., Dhillon, R., Krupski, A., Shriberg, E., Stolcke, A.: Prosody-based automatic detection of annoyance and frustration in human-computer dialog. In: ICSLP 2002 – Proceedings of the 7th International Conference on Spoken Language Processing, Denver, Colorado, pp. 2037–2040 (2002)
Larsson, S., Traum, D.: Information state and dialogue management in the TRINDI dialogue move engine toolkit. Natural Language Engineering 6, 323–340 (2000)
Becker, T., Poller, P., Schehl, J., Blaylock, N., Gerstenberger, C., Kruijff-Korbayová, I.: The SAMMIE system: Multimodal in-car dialogue. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, Sydney, Australia, pp. 57–60 (2006)
He, Y., Young, S.: A data-driven spoken language understanding system. In: ASRU 2003 – Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, St. Thomas, US Virgin Islands, pp. 583–588 (2003)
Gorniak, P., Roy, D.: Probabilistic grounding of situated speech using plan recognition and reference resolution. In: ICMI 2005 – Proceedings of the 7th International Conference on Multimodal Interfaces, Trento, Italy, pp. 138–143 (2005)
Hong, J.H., Song, Y.S., Cho, S.B.: Mixed-initiative human-robot interaction using hierarchical Bayesian networks. IEEE Transactions on Systems, Man and Cybernetics, Part A 37(6), 1158–1164 (2007)
Knight, S., Gorrell, G., Rayner, M., Milward, D., Koeling, R., Lewin, I.: Comparing grammar-based and robust approaches to speech understanding: A case study. In: Proceedings of Eurospeech 2001, Aalborg, Denmark, pp. 1779–1782 (2001)
Horvitz, E., Paek, T.: DeepListener: Harnessing expected utility to guide clarification dialog in spoken language systems. In: ICSLP 2000 – Proceedings of the 6th International Conference on Spoken Language Processing, Beijing, China, pp. 226–229 (2000)
Bohus, D., Rudnicky, A.: Constructing accurate beliefs in spoken dialog systems. In: ASRU 2005 – Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding, San Juan, Puerto Rico, pp. 272–277 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ye, P., Zukerman, I. (2009). Towards Interpreting Task-Oriented Utterance Sequences. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-10439-8_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10438-1
Online ISBN: 978-3-642-10439-8
eBook Packages: Computer ScienceComputer Science (R0)