Abstract
Research on affective computing is growing rapidly and new applications are being developed more frequently. They use information about the affective/mental states of users to adapt their interfaces or add new functionalities. Face activity, voice, text physiology and other information about the user are used as input to affect recognition modules, which are built as classification algorithms. Brain EEG signals have rarely been used to build such classifiers due to the lack of a clear theoretical framework. We present here an evaluation of three different classification techniques and their adaptive variations of a 10-class emotion recognition experiment. Our results show that affect recognition from EEG signals might be possible and an adaptive algorithm improves the performance of the classification task.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1175–1191 (2001)
Olofsson, J.K., Nordin, S., Sequeira, H., Polich, J.: Affective picture processing: an integrative review of erp findings. Biol. Psychol. 77(3), 247–265 (2008)
Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32–R57 (2007)
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for eeg-based brain-computer interfaces. Journal of Neural Engineering 4(2007) (2007)
Calvo, R.A., Brown, I., Scheding, S.: Effect of experimental factors on the recognition of affective mental states through physiological measures. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 61–70. Springer, Heidelberg (2009)
Shenoy, P., Krauledat, M., Blankertz, B., Rao, R., Müller, K.: Towards adaptive classification for bci. Journal of Neural Engineering 3(1) (2006)
Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: Arousal evaluation using eeg’s and peripheral physiological signals. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 530–537. Springer, Heidelberg (2006)
Khalili, Z., Moradi, M.H.: Emotion detection using brain and peripheral signals. In: Cairo International on Biomedical Engineering Conference, CIBEC 2008, pp. 1–4 (2008)
Horlings, R., Datcu, D., Rothkrantz, L.: Emotion recognition using brain activity. In: Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing. ACM, New York (2008)
Savran, A., Ciftci, K., Chanel, G., Mota, J., Viet, L., Sankur, B., Akarun, L., Caplier, A., Rombaut, M.: Emotion detection in the loop from brain signals and facial images (2006)
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1226–1238 (2005)
Last, M.: Online classification of nonstationary data streams. Intell. Data Anal. 6(2), 129–147 (2002)
Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical report, Department of Computer Science, Trinity College (2004)
Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, California, pp. 97–106. ACM, New York (2001)
Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)
Coan, J.A., Allen, J.J.B.: Handbook of emotion elicitation and assessment. Oxford University Press, Oxford (2007)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)
Platt, J.: Machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning (1998)
Cieslak, D., Chawla, N.: A Framework for Monitoring Classifiers’ Performance: When and Why Failure Occurs? Knowledge and Information Systems 18(1), 83–109 (2009)
Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)
Heijden, F., Duin, R., de Ridder, D., Tax, D.: Classification, parameter estimation and state estimation. John Wiley & Sons, Chichester (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
AlZoubi, O., Calvo, R.A., Stevens, R.H. (2009). Classification of EEG for Affect Recognition: An Adaptive Approach. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-10439-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10438-1
Online ISBN: 978-3-642-10439-8
eBook Packages: Computer ScienceComputer Science (R0)