[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Classification of EEG for Affect Recognition: An Adaptive Approach

  • Conference paper
AI 2009: Advances in Artificial Intelligence (AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Included in the following conference series:

  • 1975 Accesses

Abstract

Research on affective computing is growing rapidly and new applications are being developed more frequently. They use information about the affective/mental states of users to adapt their interfaces or add new functionalities. Face activity, voice, text physiology and other information about the user are used as input to affect recognition modules, which are built as classification algorithms. Brain EEG signals have rarely been used to build such classifiers due to the lack of a clear theoretical framework. We present here an evaluation of three different classification techniques and their adaptive variations of a 10-class emotion recognition experiment. Our results show that affect recognition from EEG signals might be possible and an adaptive algorithm improves the performance of the classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1175–1191 (2001)

    Article  Google Scholar 

  2. Olofsson, J.K., Nordin, S., Sequeira, H., Polich, J.: Affective picture processing: an integrative review of erp findings. Biol. Psychol. 77(3), 247–265 (2008)

    Article  Google Scholar 

  3. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32–R57 (2007)

    Google Scholar 

  4. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for eeg-based brain-computer interfaces. Journal of Neural Engineering 4(2007) (2007)

    Google Scholar 

  5. Calvo, R.A., Brown, I., Scheding, S.: Effect of experimental factors on the recognition of affective mental states through physiological measures. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 61–70. Springer, Heidelberg (2009)

    Google Scholar 

  6. Shenoy, P., Krauledat, M., Blankertz, B., Rao, R., Müller, K.: Towards adaptive classification for bci. Journal of Neural Engineering 3(1) (2006)

    Google Scholar 

  7. Chanel, G., Kronegg, J., Grandjean, D., Pun, T.: Emotion assessment: Arousal evaluation using eeg’s and peripheral physiological signals. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds.) MRCS 2006. LNCS, vol. 4105, pp. 530–537. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Khalili, Z., Moradi, M.H.: Emotion detection using brain and peripheral signals. In: Cairo International on Biomedical Engineering Conference, CIBEC 2008, pp. 1–4 (2008)

    Google Scholar 

  9. Horlings, R., Datcu, D., Rothkrantz, L.: Emotion recognition using brain activity. In: Proceedings of the 9th International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing. ACM, New York (2008)

    Google Scholar 

  10. Savran, A., Ciftci, K., Chanel, G., Mota, J., Viet, L., Sankur, B., Akarun, L., Caplier, A., Rombaut, M.: Emotion detection in the loop from brain signals and facial images (2006)

    Google Scholar 

  11. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1226–1238 (2005)

    Article  Google Scholar 

  12. Last, M.: Online classification of nonstationary data streams. Intell. Data Anal. 6(2), 129–147 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Tsymbal, A.: The problem of concept drift: Definitions and related work. Technical report, Department of Computer Science, Trinity College (2004)

    Google Scholar 

  14. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, California, pp. 97–106. ACM, New York (2001)

    Chapter  Google Scholar 

  15. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  16. Coan, J.A., Allen, J.J.B.: Handbook of emotion elicitation and assessment. Oxford University Press, Oxford (2007)

    Google Scholar 

  17. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  18. Platt, J.: Machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning (1998)

    Google Scholar 

  19. Cieslak, D., Chawla, N.: A Framework for Monitoring Classifiers’ Performance: When and Why Failure Occurs? Knowledge and Information Systems 18(1), 83–109 (2009)

    Article  Google Scholar 

  20. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)

    MATH  Google Scholar 

  21. Heijden, F., Duin, R., de Ridder, D., Tax, D.: Classification, parameter estimation and state estimation. John Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

AlZoubi, O., Calvo, R.A., Stevens, R.H. (2009). Classification of EEG for Affect Recognition: An Adaptive Approach. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics