[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

CoXCS: A Coevolutionary Learning Classifier Based on Feature Space Partitioning

  • Conference paper
AI 2009: Advances in Artificial Intelligence (AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5866))

Included in the following conference series:

Abstract

Learning classifier systems (LCSs) are a machine learning technique, which combine reinforcement learning and evolutionary algorithms to evolve a set of classifiers (or rules) for pattern classification tasks. Despite promising performance across a variety of data sets, the performance of LCS is often degraded when data sets of high dimensionality and relatively few instances are encountered, a common occurrence with gene expression data. In this paper, we propose a number of extensions to XCS, a widely used accuracy-based LCS, to tackle such problems. Our model, CoXCS, is a coevolutionary multi-population XCS. Isolated sub-populations evolve a set of classifiers based on a partitioning of the feature space in the data. Modifications to the base XCS framework are introduced including an algorithm to create the match set and a specialized crossover operator. Experimental results show that the accuracy of the proposed model is significantly better than other well-known classifiers when the ratio of data features to samples is extremely large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/

  2. Bull, L., Kovacs, T. (eds.): Foundations of Learning Classifier Systems. Studies in Fuzziness and Soft Computing, vol. 183. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  3. Butz, M., Pelikan, M., Lloral, X., Goldberg, D.E.: Automated global structure extraction for effective local building block processing in XCS. Evolutionary Computation 14(3), 345–380 (2006)

    Article  Google Scholar 

  4. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation 8(1), 28–46 (2004)

    Article  Google Scholar 

  5. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–274. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Dam, H.H., Abbass, H.A., Lokan, C.: DXCS: an XCS system for distributed data mining. In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO 2005), pp. 1883–1890. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Gershoff, M., Schulenburg, S.: Collective behavior based hierarchical XCS. In: Proceedings of the 2007 Genetic And Evolutionary Computation Conference (GECCO 2007), pp. 2695–2700. ACM Press, New York (2007)

    Chapter  Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Google Scholar 

  10. Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., Wilfond, B., Borg, A., Trent, J.: Gene-Expression profiles in hereditary breast cancer. N. Engl. J. Med. 344(8), 539–548 (2001)

    Article  Google Scholar 

  11. Holland, J.H., Booker, L.B., Colombetti, M., Dorigo, M., Goldberg, D.E., Forrest, S., Riolo, R.L., Smith, R.E., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: What is a Learning Classifier System? In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 3–32. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Hossain, M.M., Hassan, M.R., Bailey, J.: ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data. In: Proceedings of the SIAM International Conference on Data Mining, Atlanta, Georgia, USA, April 2008, pp. 455–465 (2008)

    Google Scholar 

  13. Kovacs, T.: Two views of classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 74–87. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Lanzi, P.L.: A Study of the Generalization Capabilities of XCS. In: Bäck, T. (ed.) Proceedings of the 7th International Conference on Genetic Algorithms, pp. 418–425. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  15. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS (LNAI), vol. 1813. Springer, Heidelberg (2000)

    Google Scholar 

  16. Potter, M.A., Jong, K.A.D.: Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Article  Google Scholar 

  17. Richter, U., Prothmann, H., Schmeck, H.: Improving XCS performance by distribution. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 111–120. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Skinner, B., Nguyen, H., Liu, D.: Distributed classifier migration in XCS for classification of electroencephalographic signals. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2829–2836. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  19. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–175 (1995), http://prediction-dynamics.com/

    Article  Google Scholar 

  20. Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–222. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Zhang, Y., Rajapakse, J.C.: Machine Learning in Bioinformatics, 1st edn. Series in Bioinformatics. Wiley, Chichester (2008)

    Google Scholar 

  22. Zhu, F., Guan, S.: Cooperative co-evolution of GA-based classifiers based on input decomposition. Engineering Applications of Artificial Intelligence 21, 1360–1369 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abedini, M., Kirley, M. (2009). CoXCS: A Coevolutionary Learning Classifier Based on Feature Space Partitioning. In: Nicholson, A., Li, X. (eds) AI 2009: Advances in Artificial Intelligence. AI 2009. Lecture Notes in Computer Science(), vol 5866. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10439-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10439-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10438-1

  • Online ISBN: 978-3-642-10439-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics