Abstract
Recommender systems solve an information filtering task. They suggest data objects that seem likely to be relevant to the user based upon previous choices that this user has made. A geographic recommender system recommends items from a library of georeferenced objects such as photographs of touristic sites. A widely-used approach to recommending consists in suggesting the most popular items within the user community. However, these approaches are not able to handle individual differences between users. We ask how to identify less popular geographic objects that are nevertheless of interest to a specific user. Our approach is based on user-based collaborative filtering in conjunction with an prototypical model of geographic places (heatmaps). We discuss four different measures of similarity between users that take into account the spatial semantic derived from the spatial behavior of a user community. We illustrate the method with a real-world use case: recommendations of georeferenced photographs from the public website Panoramio. The evaluation shows that our approach achieves a better recall and precision for the first ten items than recommendations based on the most popular geographic items.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goodchild, M.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007)
Scharl, A., Tochtermann, K., Jain, L., Wu, X.: The Geospatial Web: How Geobrowsers, Social Software and the Web 2.0 are Shaping the Network Society. Springer-11645 /Dig. Serial. Springer, London (2007)
Schlieder, C.: Modeling collaborative semantics with a geographic recommender. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto, M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S., Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 338–347. Springer, Heidelberg (2007)
Schlieder, C., Matyas, C.: Photographing a city: An analysis of place concepts based on spatial choices. Spatial Cognition & Computation 9(3), 212–228 (2009)
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW 1994: Proceedings of the 1994 ACM conference on Computer supported cooperative work, pp. 175–186. ACM, New York (1994)
Girardin, F., Fiore, F.D., Blat, J., Ratti, C.: Understanding of tourist dynamics from explicitly disclosed location information. In: The 4th International Symposium on LBS & TeleCartography (2007)
Ahern, S., Naaman, M., Nair, R., Yang, J.H.I.: World explorer: visualizing aggregate data from unstructured text in geo-referenced collections. In: JCDL 2007: Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries, pp. 1–10. ACM, New York (2007)
Rattenbury, T., Naaman, M.: Methods for extracting place semantics from flickr tags. ACM Trans. Web 3(1), 1–30 (2009)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vision 80(2), 189–210 (2008)
Simon, I., Seitz, S.M.: Scene segmentation using the wisdom of crowds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 541–553. Springer, Heidelberg (2008)
Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)
McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 329–336. ACM, New York (2004)
Zhang, J., Pu, P.: A recursive prediction algorithm for collaborative filtering recommender systems. In: RecSys 2007: Proceedings of the 2007 ACM conference on Recommender systems, pp. 57–64. ACM, New York (2007)
Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: CIKM 2001: Proceedings of the tenth international conference on Information and knowledge management, pp. 247–254. ACM, New York (2001)
Park, Y.J., Tuzhilin, A.: The long tail of recommender systems and how to leverage it. In: RecSys 2008: Proceedings of the 2008 ACM conference on Recommender systems, pp. 11–18. ACM, New York (2008)
Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommendation lists. In: RecSys 2008: Proceedings of the 2008 ACM conference on Recommender systems, pp. 123–130. ACM, New York (2008)
Ziegler, C.N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of product recommendations. In: CIKM 2004: Proceedings of the thirteenth ACM international conference on Information and knowledge management, pp. 406–415. ACM, New York (2004)
Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)
Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)
Jones, C.B., Alani, H., Tudhope, D.: Geographical information retrieval with ontologies of place. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 322–335. Springer, Heidelberg (2001)
Rodríguez, M.A., Egenhofer, M.J.: Comparing geospatial entity classes: An asymmetric and context-dependent similarity measure. International Journal of Geographical Information Science 18, 229–256 (2004)
Schwering, A.: Approaches to semantic similarity measurement for geo-spatial data: A survey. Transactions in GIS 12(1), 5–29 (2008)
Janowicz, K., Raubal, M., Schwering, A., Kuhn, W. (eds.): Special Issue on Semantic Similarity Measurement and Geospatial Applications. Transactions in GIS 12(6) (2008)
Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Journal of Artificial Intelligence Research 11, 95–130 (1999)
Bae-Hee, L., Heung-Nam, K., Jin-Guk, J., Geun-Sik, J.: Location-based service with context data for a restaurant recommendation. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 430–438. Springer, Heidelberg (2006)
Horozov, T., Narasimhan, N., Vasudevan, V.: Using location for personalized poi recommendations in mobile environments. In: SAINT 2006: Proceedings of the International Symposium on Applications on Internet, Washington, DC, USA, pp. 124–129. IEEE Computer Society, Los Alamitos (2006)
Tanimoto, T.T.: An Elementary Mathematical Theory of Classification and Prediction (1958)
Rosch, E.: Principles of Categorization, pp. 27–48. John Wiley & Sons Inc., Chichester (1978)
Guy, M., Tonkin, E.: Folksonomies: Tidying up tags? D-Lib Magazine 12 (2006)
Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion (2006)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Matyas, C., Schlieder, C. (2009). A Spatial User Similarity Measure for Geographic Recommender Systems. In: Janowicz, K., Raubal, M., Levashkin, S. (eds) GeoSpatial Semantics. GeoS 2009. Lecture Notes in Computer Science, vol 5892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10436-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-10436-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10435-0
Online ISBN: 978-3-642-10436-7
eBook Packages: Computer ScienceComputer Science (R0)