[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Generating Shifting Workloads to Benchmark Adaptability in Relational Database Systems

  • Conference paper
Performance Evaluation and Benchmarking (TPCTC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5895))

Included in the following conference series:

Abstract

A large body of research concerns the adaptability of database systems. Many commercial systems already contain autonomic processes that adapt configurations as well as data structures and data organization. Yet there is virtually no possibility for a just measurement of the quality of such optimizations. While standard benchmarks have been developed that simulate real-world database applications very precisely, none of them considers variations in workloads produced by human factors. Today’s benchmarks test the performance of database systems by measuring peak performance on homogeneous request streams. Nevertheless, in systems with user interaction access patterns are constantly shifting. We present a benchmark that simulates a web information system with interaction of large user groups. It is based on the analysis of a real online eLearning management system with 15,000 users. The benchmark considers the temporal dependency of user interaction. Main focus is to measure the adaptability of a database management system according to shifting workloads. We will give details on our design approach that uses sophisticated pattern analysis and data mining techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A.J., Garcia-Arellano, C., Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In: VLDB 2004: Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp. 1087–1097. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  2. Dageville, B., Das, D., Dias, K., Yagoub, K., Zaït, M., Ziauddin, M.: Automatic sql tuning in oracle 10g. In: VDLB 2004: Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp. 1098–1109. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  3. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A.P., Narasayya, V.R., Syamala, M.: Database tuning advisor for microsoft sql server 2005. In: VDLB 2004: Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp. 1110–1121. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  4. Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: ICDE 2007: Proceedings of the 23rd International Conference on Data Engineering, pp. 826–835. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  5. Wiese, D., Rabinovitch, G., Reichert, M., Arenswald, S.: Autonomic tuning expert: a framework for best-practice oriented autonomic database tuning. In: CASCON 2008: Proceedings of the 2008 conference of the center for advanced studies on collaborative research, pp. 27–41. ACM, New York (2008)

    Chapter  Google Scholar 

  6. Nambiar, R.O., Poess, M.: The making of tpc-ds. In: VLDB 2006: Proceedings of the 32nd international conference on Very large data bases, pp. 1049–1058 (2006)

    Google Scholar 

  7. Poess, M.: Controlled sql query evolution for decision support benchmarks. In: WSOP 2007: Proceedings of the 6th International Workshop on Software and Performance, pp. 38–41. ACM, New York (2007)

    Chapter  Google Scholar 

  8. Hsu, W.W., Smith, A.J., Young, H.C.: Characteristics of production database workloads and the tpc benchmarks. IBM Systems Journal 40(3), 781–802 (2001)

    Article  Google Scholar 

  9. Agrawal, S., Chu, E., Narasayya, V.: Automatic physical design tuning: Workload as a sequence. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pp. 683–694. ACM, New York (2006)

    Chapter  Google Scholar 

  10. Holze, M., Ritter, N.: Autonomic databases: Detection of workload shifts with n-gram-models. In: Atzeni, P., Caplinskas, A., Jaakkola, H. (eds.) ADBIS 2008. LNCS, vol. 5207, pp. 127–142. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Consens, M.P., Barbosa, D., Teisanu, A.M., Mignet, L.: Goals and benchmarks for autonomic configuration recommenders. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 239–250. ACM, New York (2005)

    Chapter  Google Scholar 

  12. Rabl, T., Pfeffer, M., Kosch, H.: Dynamic allocation in a self-scaling cluster database. Concurrency and Computation: Practice and Experience 20(17), 2025–2038 (2007)

    Article  Google Scholar 

  13. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1(2), 226–251 (2004)

    MATH  MathSciNet  Google Scholar 

  14. Chen, P.P.S.: The entity-relationship model — toward a unified view of data. ACM Transactions on Database Systems 1(1), 9–36 (1976)

    Article  Google Scholar 

  15. Stephens, J.M., Poess, M.: Mudd: a multi-dimensional data generator. In: WOSP 2004: Proceedings of the 4th international workshop on Software and performance, pp. 104–109. ACM, New York (2004)

    Chapter  Google Scholar 

  16. Fuchs, E., Gruber, C., Reitmaier, T., Sick, B.: Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks. IEEE Transactions on Neural Networks (2009) (accepted – to appear)

    Google Scholar 

  17. Fuchs, E., Gruber, T., Nitschke, J., Sick, B.: On-line motif detection in time series with SwiftMotif. Pattern Recognition 42(11), 3015–3031 (2009)

    Article  MATH  Google Scholar 

  18. Elhay, S., Golub, G.H., Kautsky, J.: Updating and downdating of orthogonal polynomials with data fitting applications. SIAM Journal on Matrix Analysis and Applications 12(2), 327–353 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fuchs, E.: On discrete polynomial least-squares approximation in moving time windows. In: Gautschi, W., Golub, G., Opfer, G. (eds.) Applications and Computation of Orthogonal Polynomials. International Series of Numerical Mathematics, vol. 131, pp. 93–107. Birkhäuser, Basel (1999); (Proceedings of the Conference at the Mathematical Research Institute Oberwolfach, Germany, March 22-28 1998)

    Google Scholar 

  20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  21. Blackburn, S.M., McKinley, K.S., Garner, R., Hoffmann, C., Khan, A.M., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovic, D., Van Drunen, T., von Dincklage, D., Wiedermann, B.: Wake up and smell the coffee: evaluation methodology for the 21st century. Communications of the ACM 51(8), 83–89 (2008)

    Article  Google Scholar 

  22. Bruno, N.: A critical look at the tab benchmark for physical design tools. SIGMOD Record 36(4), 7–12 (2007)

    Article  Google Scholar 

  23. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run tpc-ds: A workload analysis. In: VLDB 2007: Proceedings of the 33rd international conference on Very large data bases, pp. 1138–1149. VLDB Endowment (2007)

    Google Scholar 

  24. Poess, M., Nambiar, R.O.: Energy cost, the key challenge of today’s data centers: A power consumption analysis of tpc-c results. Proceedings of VLDB Endowment 1(2), 1229–1240 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rabl, T., Lang, A., Hackl, T., Sick, B., Kosch, H. (2009). Generating Shifting Workloads to Benchmark Adaptability in Relational Database Systems. In: Nambiar, R., Poess, M. (eds) Performance Evaluation and Benchmarking. TPCTC 2009. Lecture Notes in Computer Science, vol 5895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10424-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10424-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10423-7

  • Online ISBN: 978-3-642-10424-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics