Abstract
Modeling, characterization and analysis of biological shapes and forms are important in many computational biology studies. Shape representation challenges span the spectrum from small scales (e.g., microarray imaging and protein structure) to the macro scale (e.g., neuroimaging of human brains). In this paper, we present a new approach to represent and analyze biological shapes using wavelets. We apply the new technique to multi-spectral shape decomposition and study shape variability between populations using brain cortical and subcortical surfaces. The wavelet-space-induced shape representation allows us to study the multi-spectral nature of the shape’s geometry, topology and features. Our results are very promising and, comparing to the spherical-wavelets method, our approach is more compact and allows utilization of diverse wavelet bases.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3d shape analysis using spherical wavelets. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 459–467. Springer, Heidelberg (2005)
Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Shape-driven 3D segmentation using spherical wavelets. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 66–74. Springer, Heidelberg (2006)
Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3-d shape representation and segmentation using spherical wavelets. IEEE Transactions on Medical Imaging 26, 598 (2007)
Schröder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere, pp. 161–172 (1995)
Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis 29, 511 (1998)
Aràndiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function I: Linear reconstruction techniques. SIAM Journal on Numerical Analysis 36, 160–203 (1999)
Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Transactions on Graphics 22, 340 (2003)
Tu, Z., Zheng, S., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Dinov, I., Thompson, P., Toga, A.: Automated extraction of the cortical sulci based on a supervised learning approach. IEEE Transactions on Medical Imaging 26, 541 (2007)
Thompson, P., Toga, A.: A framework for computational anatomy. Computing and Visualization in Science 5, 13–34 (2002)
Thompson, P., Lee, A., Dutton, R., Geaga, J., Hayashi, K., Eckert, M., Bellugi, U., Galaburda, A., Korenberg, J., Mills, D., et al.: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. Journal of Neuroscience 25, 4146–4158 (2005)
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., et al.: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London Series B 356, 1293 (2001)
Thompson, P., Hayashi, K., De Zubicaray, G., Janke, A., Rose, S., Semple, J., Herman, D., Hong, M., Dittmer, S., Doddrell, D., et al.: Dynamics of gray matter loss in Alzheimer’s disease. Journal of Neuroscience 23, 994 (2003)
Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13, 856–876 (2001)
MacDonald, J.: A method for identifying geometrically simple surfaces from three-dimensional images. PhD Thesis (1998)
Thompson, P., Hayashi, K., de Zubicaray, G., Janke, A., Rose, S., Semple, J., Hong, M., Herman, D., Gravano, D., Doddrell, D., et al.: Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22, 1754–1766 (2004)
Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17, 87–97 (1998)
Evans, A., Collins, D., Neelin, P., MacDonald, D., Kamber, M., Marrett, T.: Three-dimensional correlative imaging: applications in human brain mapping. In: Thatcher, R.W., Hallett, M., Zeffiro, T., John, E.R., Huerta, M. (eds.) Functional Neuroimaging: Technical Foundations, pp. 145–162 (1994)
Collins, D., Neelin, P., Peters, T., Evans, A.: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of computer assisted tomography 18, 192 (1994)
Shi, Y., Thompson, P., de Zubicaray, G., Rose, S., Tu, Z., Dinov, I., Toga, A.: Direct mapping of hippocampal surfaces with intrinsic shape context. Neuroimage 37, 792–807 (2007)
Shi, Y., Thompson, P., Dinov, I., Osher, S., Toga, A.: Direct cortical mapping via solving partial differential equations on implicit surfaces. Medical image analysis 11, 207–223 (2007)
Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging 23, 949–958 (2004)
Buss, S., Fillmore, J.: Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics (TOG) 20, 95–126 (2001)
Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Lecture Notes, SIAM, nr. 61 (1992)
Gibbons, J., Chakraborti, S.: Nonparametric statistical inference (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dong, B. et al. (2009). Wavelet-Based Representation of Biological Shapes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_89
Download citation
DOI: https://doi.org/10.1007/978-3-642-10331-5_89
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10330-8
Online ISBN: 978-3-642-10331-5
eBook Packages: Computer ScienceComputer Science (R0)