[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Wavelet-Based Representation of Biological Shapes

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

  • 1685 Accesses

Abstract

Modeling, characterization and analysis of biological shapes and forms are important in many computational biology studies. Shape representation challenges span the spectrum from small scales (e.g., microarray imaging and protein structure) to the macro scale (e.g., neuroimaging of human brains). In this paper, we present a new approach to represent and analyze biological shapes using wavelets. We apply the new technique to multi-spectral shape decomposition and study shape variability between populations using brain cortical and subcortical surfaces. The wavelet-space-induced shape representation allows us to study the multi-spectral nature of the shape’s geometry, topology and features. Our results are very promising and, comparing to the spherical-wavelets method, our approach is more compact and allows utilization of diverse wavelet bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3d shape analysis using spherical wavelets. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 459–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Shape-driven 3D segmentation using spherical wavelets. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 66–74. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Nain, D., Haker, S., Bobick, A., Tannenbaum, A.: Multiscale 3-d shape representation and segmentation using spherical wavelets. IEEE Transactions on Medical Imaging 26, 598 (2007)

    Article  Google Scholar 

  4. Schröder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere, pp. 161–172 (1995)

    Google Scholar 

  5. Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis 29, 511 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aràndiga, F., Donat, R., Harten, A.: Multiresolution based on weighted averages of the hat function I: Linear reconstruction techniques. SIAM Journal on Numerical Analysis 36, 160–203 (1999)

    Article  MathSciNet  Google Scholar 

  7. Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Transactions on Graphics 22, 340 (2003)

    Article  Google Scholar 

  8. Tu, Z., Zheng, S., Yuille, A., Reiss, A., Dutton, R., Lee, A., Galaburda, A., Dinov, I., Thompson, P., Toga, A.: Automated extraction of the cortical sulci based on a supervised learning approach. IEEE Transactions on Medical Imaging 26, 541 (2007)

    Article  Google Scholar 

  9. Thompson, P., Toga, A.: A framework for computational anatomy. Computing and Visualization in Science 5, 13–34 (2002)

    Article  MATH  Google Scholar 

  10. Thompson, P., Lee, A., Dutton, R., Geaga, J., Hayashi, K., Eckert, M., Bellugi, U., Galaburda, A., Korenberg, J., Mills, D., et al.: Abnormal cortical complexity and thickness profiles mapped in Williams syndrome. Journal of Neuroscience 25, 4146–4158 (2005)

    Article  Google Scholar 

  11. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., et al.: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London Series B 356, 1293 (2001)

    Article  Google Scholar 

  12. Thompson, P., Hayashi, K., De Zubicaray, G., Janke, A., Rose, S., Semple, J., Herman, D., Hong, M., Dittmer, S., Doddrell, D., et al.: Dynamics of gray matter loss in Alzheimer’s disease. Journal of Neuroscience 23, 994 (2003)

    Google Scholar 

  13. Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13, 856–876 (2001)

    Article  Google Scholar 

  14. MacDonald, J.: A method for identifying geometrically simple surfaces from three-dimensional images. PhD Thesis (1998)

    Google Scholar 

  15. Thompson, P., Hayashi, K., de Zubicaray, G., Janke, A., Rose, S., Semple, J., Hong, M., Herman, D., Gravano, D., Doddrell, D., et al.: Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22, 1754–1766 (2004)

    Article  Google Scholar 

  16. Sled, J., Zijdenbos, A., Evans, A.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17, 87–97 (1998)

    Article  Google Scholar 

  17. Evans, A., Collins, D., Neelin, P., MacDonald, D., Kamber, M., Marrett, T.: Three-dimensional correlative imaging: applications in human brain mapping. In: Thatcher, R.W., Hallett, M., Zeffiro, T., John, E.R., Huerta, M. (eds.) Functional Neuroimaging: Technical Foundations, pp. 145–162 (1994)

    Google Scholar 

  18. Collins, D., Neelin, P., Peters, T., Evans, A.: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of computer assisted tomography 18, 192 (1994)

    Article  Google Scholar 

  19. Shi, Y., Thompson, P., de Zubicaray, G., Rose, S., Tu, Z., Dinov, I., Toga, A.: Direct mapping of hippocampal surfaces with intrinsic shape context. Neuroimage 37, 792–807 (2007)

    Article  Google Scholar 

  20. Shi, Y., Thompson, P., Dinov, I., Osher, S., Toga, A.: Direct cortical mapping via solving partial differential equations on implicit surfaces. Medical image analysis 11, 207–223 (2007)

    Article  Google Scholar 

  21. Gu, X., Wang, Y., Chan, T., Thompson, P., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging 23, 949–958 (2004)

    Article  Google Scholar 

  22. Buss, S., Fillmore, J.: Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics (TOG) 20, 95–126 (2001)

    Article  Google Scholar 

  23. Daubechies, I.: Ten lectures on wavelets. CBMS-NSF Lecture Notes, SIAM, nr. 61 (1992)

    Google Scholar 

  24. Gibbons, J., Chakraborti, S.: Nonparametric statistical inference (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, B. et al. (2009). Wavelet-Based Representation of Biological Shapes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics