Abstract
This paper aims to match two sets of nonrigid feature points using random sampling methods. By exploiting the principle eigenvector of corres pondence-model-linkage, an adaptive sampling method is devised to efficiently deal with non-rigid matching problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dellaert, F., Seitz, S.M., Thorpe, C.E., Thrun, S.: Structure from motion without correspondence. In: CVPR, pp. 2557–2564 (2000)
Torr, P.H., Davidson, C.: IMPSAC: Synthesis of importance sampling and random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 354–364 (2003)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2003)
Bujnak, M., Sára, R.: A robust graph-based method for the general correspondence problem demonstrated on image stitching. In: ICCV, pp. 1–8 (2007)
Caetano, T., Cheng, L., Le, Q., Smola, A.: Learning graph matching. In: IEEE International Conference on Computer Vision, ICCV (2007)
Chui, H.: A new algorithm for non-rigid point matching. In: CVPR, pp. 44–51 (2000)
Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. IEEE Transactions on pattern Analysis and Machine Intelligence 25, 187–199 (2003)
Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: CVPR, pp. 26–33 (2005)
Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference of Computer Vision (ICCV), vol. 2, pp. 1482–1489 (2005)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)
Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1523–1535 (2005)
Fan, L., Pylvänäinen, T.: Robust scale estimation from ensemble inlier sets for random sample consensus methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 182–195. Springer, Heidelberg (2008)
Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Patt. Anal. Mach. Intell. 18, 377–388 (1996)
Gold, S., Rangarajan, A., ping Lu, C., Mjolsness, E.: New algorithms for 2d and 3d point matching: Pose estimation and correspondence. Pattern Recognition 31, 957–964 (1998)
Caetano, T., Caelli, T., Schuurmans, D., Barone, D.: Graphical models and point pattern matching. IEEE Transactions on pattern Analysis and Machine Intelligence 10, 1646–1663 (2006)
Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 313–320. MIT Press, Cambridge (2007)
McAuley, J.J., Caetano, T.S., Smola, A.J.: Robust near-isometric matching via structured learning of graphical models. In: NIPS, pp. 1057–1064 (2008)
Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)
Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Proceedings of the ninth European Conference on Computer Vision (2006)
Kuhn, H.W.: Variants of the hungarian method for assignment problems. Naval Research Logistic Quarterly 3, 253–258 (1956)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46, 668–677 (1999)
Ng, A.Y., Zheng, A.X., Jordan, M.I.: Link analysis, eigenvectors and stability. In: IJCAI, pp. 903–910 (2001)
Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15 (1972)
Kultanen, P., Xu, L., Oja, E.: Randomized hough transform. In: Proceedings of the International Conference on Pattern Recognition, pp. 631–635 (1990)
Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, L., Pylvänäinen, T. (2009). Efficient Random Sampling for Nonrigid Feature Matching. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_43
Download citation
DOI: https://doi.org/10.1007/978-3-642-10331-5_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10330-8
Online ISBN: 978-3-642-10331-5
eBook Packages: Computer ScienceComputer Science (R0)