[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Random Sampling for Nonrigid Feature Matching

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

  • 1641 Accesses

Abstract

This paper aims to match two sets of nonrigid feature points using random sampling methods. By exploiting the principle eigenvector of corres pondence-model-linkage, an adaptive sampling method is devised to efficiently deal with non-rigid matching problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dellaert, F., Seitz, S.M., Thorpe, C.E., Thrun, S.: Structure from motion without correspondence. In: CVPR, pp. 2557–2564 (2000)

    Google Scholar 

  2. Torr, P.H., Davidson, C.: IMPSAC: Synthesis of importance sampling and random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 354–364 (2003)

    Article  Google Scholar 

  3. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Bujnak, M., Sára, R.: A robust graph-based method for the general correspondence problem demonstrated on image stitching. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  5. Caetano, T., Cheng, L., Le, Q., Smola, A.: Learning graph matching. In: IEEE International Conference on Computer Vision, ICCV (2007)

    Google Scholar 

  6. Chui, H.: A new algorithm for non-rigid point matching. In: CVPR, pp. 44–51 (2000)

    Google Scholar 

  7. Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. IEEE Transactions on pattern Analysis and Machine Intelligence 25, 187–199 (2003)

    Article  Google Scholar 

  8. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: CVPR, pp. 26–33 (2005)

    Google Scholar 

  9. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference of Computer Vision (ICCV), vol. 2, pp. 1482–1489 (2005)

    Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1523–1535 (2005)

    Article  Google Scholar 

  12. Fan, L., Pylvänäinen, T.: Robust scale estimation from ensemble inlier sets for random sample consensus methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 182–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Patt. Anal. Mach. Intell. 18, 377–388 (1996)

    Article  Google Scholar 

  14. Gold, S., Rangarajan, A., ping Lu, C., Mjolsness, E.: New algorithms for 2d and 3d point matching: Pose estimation and correspondence. Pattern Recognition 31, 957–964 (1998)

    Article  Google Scholar 

  15. Caetano, T., Caelli, T., Schuurmans, D., Barone, D.: Graphical models and point pattern matching. IEEE Transactions on pattern Analysis and Machine Intelligence 10, 1646–1663 (2006)

    Article  Google Scholar 

  16. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 313–320. MIT Press, Cambridge (2007)

    Google Scholar 

  17. McAuley, J.J., Caetano, T.S., Smola, A.J.: Robust near-isometric matching via structured learning of graphical models. In: NIPS, pp. 1057–1064 (2008)

    Google Scholar 

  18. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)

    Article  Google Scholar 

  20. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  21. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Proceedings of the ninth European Conference on Computer Vision (2006)

    Google Scholar 

  22. Kuhn, H.W.: Variants of the hungarian method for assignment problems. Naval Research Logistic Quarterly 3, 253–258 (1956)

    Article  Google Scholar 

  23. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46, 668–677 (1999)

    Article  Google Scholar 

  24. Ng, A.Y., Zheng, A.X., Jordan, M.I.: Link analysis, eigenvectors and stability. In: IJCAI, pp. 903–910 (2001)

    Google Scholar 

  25. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15 (1972)

    Article  Google Scholar 

  26. Kultanen, P., Xu, L., Oja, E.: Randomized hough transform. In: Proceedings of the International Conference on Pattern Recognition, pp. 631–635 (1990)

    Google Scholar 

  27. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, L., Pylvänäinen, T. (2009). Efficient Random Sampling for Nonrigid Feature Matching. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics