[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Closing Curves with Riemannian Dilation: Application to Segmentation in Automated Cervical Cancer Screening

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

Abstract

In this paper, we describe a nuclei segmentation algorithm for Pap smears that uses anisotropic dilation for curve closing. Edge detection methods often return broken edges that need to be closed to achieve a proper segmentation. Our method performs dilation using Riemannian distance maps that are derived from the local structure tensor field in the image. We show that our curve closing improve the segmentation along weak edges and significantly increases the overall performance of segmentation. This is validated in a thorough study on realistic synthetic cell images from our Pap smear simulator. The algorithm is also demonstrated on bright-field microscope images of real Pap smears from cervical cancer screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. WHO: Comprehensive cervical cancer control: A guide to essential practice. WHO Press (2006)

    Google Scholar 

  2. Grohs, H., Husain, O. (eds.): Automated Cervical Cancer Screening. IGAKU-SHOIN Medical Publishers, Inc. (1994)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  4. Do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  5. Prados, E., Lenglet, C., et al.: Control theory and fast marching techniques for brain connectivity mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, NY, vol. 1, pp. 1076–1083. IEEE, Los Alamitos (2006)

    Google Scholar 

  6. Jeong, W.K., Fletcher, P., et al.: Interactive visualization of volumetric white matter connectivity in dt-mri using a parallel-hardware hamilton-jacobi solver. IEEE Transactions on Visualization and Computer Graphics 13, 1480–1487 (2007)

    Article  Google Scholar 

  7. Tsai, R., Zhao, H., Osher, S.: Fast sweeping algorithms for a class of hamilton-jacobi equations. SIAM journal on numerical analysis 41, 673–694 (2004)

    Article  MathSciNet  Google Scholar 

  8. Bouaynaya, N., Charif-Chefchaouni, M., Schonfeld, D.: Theoretical foundations of spatially-variant mathematical morphology part 1: Binary images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 823–836 (2008)

    Article  Google Scholar 

  9. Breuss, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology. In: Pattern Recognition and Image Analysis, Pt 2, Proc., Berlin, Germany, vol. 2, pp. 515–522 (2007)

    Google Scholar 

  10. Udupa, J., LeBlanc, V., et al.: A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics 30, 75–87 (2006)

    Article  Google Scholar 

  11. Gonzalez, R., Woods, E.: 9. In: Digital Image Processing, 3rd edn., pp. 633–635. Pearson Education, London (2008)

    Google Scholar 

  12. Ghita, O., Whelan, P.: Computational approach for edge linking. Journal of Electronic Imaging 11, 479–485 (2002)

    Article  Google Scholar 

  13. Ikonen, L.: Pixel queue algorithm for geodesic distance transforms. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 228–239. Springer, Heidelberg (2005)

    Google Scholar 

  14. Verbeek, P., Verwer, B.: Shading from shape, the eikonal equation solved by grey-weighted distance transform. Pattern Recognition Letters 11, 681–690 (1990)

    Article  MATH  Google Scholar 

  15. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Transactions on Image Processing 7, 310–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. San Jose Estepar, R.: Local Structure Tensor for Multidimensional Signal Processing. Applications to Medical Image Analysis. PhD thesis, University of Valladolid, Spain (2005)

    Google Scholar 

  17. Knutsson, H.: A tensor representation of 3-D structures. Poster presentation of 5th IEEE-ASSP and EURASIP Workshop on Multidimensional Signal Processing, Noordwijkerhout, The Netherlands (1987)

    Google Scholar 

  18. Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: IEEE First International Conference on Computer Vision, London, Great Britain, pp. 433–438 (1987)

    Google Scholar 

  19. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Workshop, pp. 281–304 (1987)

    Google Scholar 

  20. Perlin, K.: An image synthesizer. In: SIGGRAPH 1985: Proceedings of the 12th annual conference on Computer graphics and interactive techniques, New York, USA, vol. 19, pp. 287–296 (1985)

    Google Scholar 

  21. Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1923 (1998)

    Article  Google Scholar 

  22. Luengo Hendriks, C.L., van Vliet, L.J., Rieger, B., van Ginkel, M.: DIPimage: a scientific image processing toolbox for MATLAB. Computer Program (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malm, P., Brun, A. (2009). Closing Curves with Riemannian Dilation: Application to Segmentation in Automated Cervical Cancer Screening. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics