[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Contour Reconstruction for Multiple 2D Regions Based on Adaptive Boundary Samples

  • Conference paper
Combinatorial Image Analysis (IWCIA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5852))

Included in the following conference series:

Abstract

There exist a lot of algorithms for 2D contour reconstruction from sampling points which guarantee a correct result if certain sampling criteria are fulfilled. Nevertheless nearly none of these algorithms can deal with non-manifold boundaries of multiple regions. We discuss, which problems occur in this case and present a boundary reconstruction algorithm, which can deal with partitions of multiple regions, and non-smooth boundaries (e.g. corners or edges). In comparison to well-known contour reconstruction algorithms, our method requires a lower sampling density and the sampling points can be noisy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: Combinatorial curve reconstruction. Graph. Models and Image Proc. 60(2), 125–135 (1998)

    Article  Google Scholar 

  2. Attali, D.: r-Regular shape reconstruction from unorganized points. In: Proceedings of the 13th annual ACM Symposium on Comput. Geom., pp. 248–253 (1997)

    Google Scholar 

  3. Bernardini, F., Bajaj, C.L.: Sampling and reconstructing manifolds using alpha-shapes. In: Proc. 9th Canad. Conf. Comput. Geom. (1997)

    Google Scholar 

  4. Chazal, F., Lieutier, A.: Weak feature size and persistent homology: computing homology of solids in Rn from noisy data samples. In: Proc. of the 21st annual Symposium on Computational Geometry, pp. 255–262 (2005)

    Google Scholar 

  5. Dey, T.K., Kumar, P.: A simple provable algorithm for curve reconstruction. In: Proceedings of the 10th annual ACM-SIAM Symposium on Discr. Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 893–894 (1999)

    Google Scholar 

  6. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: Connecting dots with good reason. In: Proceedings of the 15th annual symposium on Computational geometry, pp. 197–206. ACM, New York (1999)

    Google Scholar 

  7. Federer, H.: Curvature measures. Transactions of the American Mathematical Society 93, 418–491 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Zoology, 259–278 (1969)

    Google Scholar 

  9. Mukhopadhyay, A., Das, A.: An RNG-based heuristic for curve reconstruction. In: Voronoi Diagrams in Science and Engineering, 3rd International Symposium ISVD 2006, pp. 246–251 (2006)

    Google Scholar 

  10. Roerdink, J.B.T.M., Meijster, A.: The Watershed Transform: Definitions, Algorithms and Parallelization Strategies. Fundam. Inform. 41(1-2), 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Stelldinger, P., Köthe, U., Meine, H.: Topologically Correct Image Segmentation Using Alpha Shapes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 542–554. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stelldinger, P., Tcherniavski, L. (2009). Contour Reconstruction for Multiple 2D Regions Based on Adaptive Boundary Samples. In: Wiederhold, P., Barneva, R.P. (eds) Combinatorial Image Analysis. IWCIA 2009. Lecture Notes in Computer Science, vol 5852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10210-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10210-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10208-0

  • Online ISBN: 978-3-642-10210-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics