Abstract
In recent years, Local Binary Patterns have proved to be a powerful local descriptor for microstructures of images, having been introduced in many facial recognition systems and intelligent environments. In this work, we present the implementation of a face recognition method based on the use of Local Binary Patterns. We used data mining tools to get a smaller feature vector and thus improve the computational cost of the system. The implementation was tested with the Color FERET database, obtaining a recognition rate of 94% and reducing 75% the original feature vector dimension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Li, S., Jain, A.: Handbook of Face Recognition. Springer, New York (2005)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 971–987 (2002)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16, 295–306 (1998)
Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, J.C., Pujol, F.A. (2011). Feature Reduction of Local Binary Patterns Applied to Face Recognition. In: Abraham, A., Corchado, J.M., González, S.R., De Paz Santana, J.F. (eds) International Symposium on Distributed Computing and Artificial Intelligence. Advances in Intelligent and Soft Computing, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19934-9_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-19934-9_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19933-2
Online ISBN: 978-3-642-19934-9
eBook Packages: EngineeringEngineering (R0)